Intro

DSO mobile is a pocket size digital storage oscilloscope fulfills basic electronic engineering requirements. It is base on ARM Cortex™-M3 compatible 32 bit platform, equipped with 320*240 color display, SD card capability, USB connection, and chargeable batteries.

Features

- Super portable and lightweight
- 2.8" color 320*240 display
- Micro SD card Waveform Storage
- Basic 1Mspo sample rate with 12bit resolution
- Various measurement markers
- Various trigger mode
- Build-in test signal
- USB chargeable battery
- Open source
Specification

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>2.8" Color TFT LCD</td>
</tr>
<tr>
<td>Display Resolution</td>
<td>320×240</td>
</tr>
<tr>
<td>Display Color</td>
<td>65K</td>
</tr>
<tr>
<td>Analog bandwidth</td>
<td>0 - 1MHz</td>
</tr>
<tr>
<td>Max sample rate</td>
<td>1Msps 12Bits</td>
</tr>
<tr>
<td>Sample memory depth</td>
<td>4096 Point</td>
</tr>
<tr>
<td>Horizontal sensitivity</td>
<td>1μS/Div ~ 10S/Div (1-2-5 Step)</td>
</tr>
<tr>
<td>Horizontal position</td>
<td>adjustable with indicator</td>
</tr>
<tr>
<td>Vertical sensitivity</td>
<td>10mV/Div ~ 10V/Div (with ×1 probe)</td>
</tr>
<tr>
<td>Vertical position</td>
<td>adjustable with indicator</td>
</tr>
<tr>
<td>Input impedance</td>
<td>>500KΩ</td>
</tr>
<tr>
<td>Max input voltage</td>
<td>80Vpp (by ×1 probe)</td>
</tr>
<tr>
<td>Coupling</td>
<td>DC</td>
</tr>
<tr>
<td>Trig modes</td>
<td>Auto, Norma, Single, None and Scan</td>
</tr>
<tr>
<td>Functionalities</td>
<td>Automatic measurement: frequency, cycle, duty, Vpp, Vram, Vavg and DC voltage</td>
</tr>
<tr>
<td></td>
<td>Precise vertical measurement with markers</td>
</tr>
<tr>
<td></td>
<td>Precise horizontal measurement with markers</td>
</tr>
<tr>
<td></td>
<td>Rising/falling edge trigger</td>
</tr>
<tr>
<td></td>
<td>Trig level adjustable with indicator</td>
</tr>
<tr>
<td></td>
<td>Trig sensitivity adjustable with indicator</td>
</tr>
<tr>
<td></td>
<td>Hold/run feature</td>
</tr>
<tr>
<td>Test signal</td>
<td>Built-in 10Hz ~ 1MHz (1-2-5 Step)</td>
</tr>
<tr>
<td>Waveform storage</td>
<td>SD card</td>
</tr>
<tr>
<td>PC connection via USB</td>
<td>as SD card reader</td>
</tr>
<tr>
<td>Upgrade</td>
<td>by bootloader via USB</td>
</tr>
<tr>
<td>Power supply</td>
<td>3.7V Chargeable Lithium battery / USB</td>
</tr>
<tr>
<td>Dimension (w/o probe)</td>
<td>105mm X 53mm X 8mm</td>
</tr>
</tbody>
</table>
Instructions

User interface

- 320*240 TFT LCD Display
- Power Switch
- 50Hz Square Wave
- Run/Stop Button
- Probe jack
- Navigation/Adjustment buttons
- Mini USB port
- Memory Button

- Status
- 3.7V Cell
- Cursor
- Adjust
- Adjust Cursor
- SE settings: X,Y Sensitivity
- MO settings: scan mode, trigger mode
- Tr settings: trigger level, trigger sensitivity
- C1 set: cross cursor 1 position
- C2 settings: Cross Cursor 2 Position
- Me Select: measurement display mode
- Of set: x-axis offset, y-axis offset
- Fo settings: the output pulse frequency
- FL: File Operations (For SD Card)

Time Base

53mm
105mm
SE settings: vertical stalls, stalls level, multiple probe
Click the up and down, left and right gear to achieve vertical and horizontal adjustment of stalls;
Long by up and down, left and right position adjustment to achieve;
Long press M button to select multiple probes;
Play starts scanning short or suspended by scanning,
Press and Play show or hide all measurements.

MO settings: scan mode, trigger mode
Select trigger mode by up and down, left and right select the scan mode;
Play starts scanning short or suspended by scanning,
Press and Play directly to the SE menu.

Tr settings: trigger level, trigger sensitivity
Adjusted by the upper and lower trigger level, so adjust the trigger sensitivity.
Press and M blanking trigger line;
Play starts scanning short or suspended by scanning,
Press and Play directly to the SE menu.

C1 set: cross cursor 1 position
Cursor up and down to adjust the level by 1, so adjust the vertical cursor 1.
“M” blanking press and move the cursor on the last instruction value -> blanking on the last move of the cursor
and the direction value -> display the last move of the cursor on and Direct numerical;
Play starts scanning short or suspended by scanning,
Press and Play directly to the SE menu.

C2 settings: Cross Cursor 2 Position
Cursor up and down to adjust the level by 2, so adjust the vertical cursor 2.
“M” blanking press and move the cursor on the last instruction value -> blanking on the last move of the cursor
and the direction value -> display the last move of the cursor on and Direct numerical;
Long press Play button to return to cross cursor 1 Menu

Me Select: measurement mode, set the measurement display mode
Selected by measuring the content of the upper and lower,
Long right-click shows all measurements,
Long press left hidden;
Play starts scanning short or suspended by scanning,
Press and Play directly to the SE menu.

Of set: x-axis offset, y-axis offset
Press down to adjust the vertical offset, so adjust the level of migration.
M blanking offset by the level of long reference line;
Play starts scanning short or suspended by scanning,
Press and Play directly to the SE menu.

Fo settings: the output pulse frequency
Press down to adjust the output frequency;
Play starts scanning short or suspended by scanning,
Press and Play directly to the SE menu.

FL: File Operations
Right click choose save, left click to select the reading, press down the selection process number,
press “M” the implementation of selected operations;
Long press down the button, move the reference waveform locations,
Long press the left button, hidden reference waveform,
Long press the right button to display the reference waveform.
Play starts scanning short or suspended by scanning,
Press and Play directly to the SE menu.

Click the “M” switching table; a long time does not operate to automatically back to SE menu.

Save method parameters: Set a good start after at least 5 minutes to ensure, or can function in non-SE long press PLAY
button under the table until you are prompted;
Hold down the "M" key to boot, you can use the default settings.
Time increment between two time the cursor into the frequency display function:

C1 or C2 in the next menu, click the down button can display time, display frequency, automatically switching between three modes alternately.

Voltage correction to use:
 a) zero correction, Hold down the left-turn, short the probe, open the measurement display.
 Press down button to select the correct short-stalls, short press the left or Right to show the average voltage closest to 0V.

 b) Gain correction
 Prepare a reference power, hold down the right boot, then the probe base power, open the measurement display. Press down button to select short.
 Correction of stalls, short press the left or right to display the average voltage closest to the reference power value.
 To achieve the best results, repeat this process several times, after a short press “M” key once, then press play button to save long.

Hold down the “M” key as the boot, will not use the information stored in the correction.

To avoid the slow USB charging oscilloscope display, the normal boot will be shielded USB communications, PC will be displayed at this time does not recognize the USB device

To use USB communications, press and hold the PLAY key to boot.
Firmware upgrade

It's easy to upgrade firmware with USB bootloader.

2. Connect Oscilloscope with PC, press and hold switch on power, until oscilloscope displays:

 "Please Connect to USB Host!"

 "DS0201 Device Firmware Upgrade Ver 2.0"

 When PC connection is detected,

 "Firmware Upgrading..."

 "Please Wait"

 "DS0201 Device Firmware Upgrade Ver 2.0"

3. Run "Dfuse Demo" on PC, check (1), select firmware to be uploaded (e.g."DS0201_FW_V2.00.DFU") at (2)
4. In the next screen, press (1) "Upgrade", when upgrade finishes successfully, status bar will notify (2).

5. Shut down and reactivate power to use new firmware.
ARM DSO Nano
Pocket-Sized Digital Oscilloscope

Firmware is updated.

How to Charger the Battery?
Turn off the power of DSO Nano, Connected the USB with PC or USB power adapter

How to Connected with PC?
Turn off the power, Connected with USB to PC. Hold the Key “M” and Turn on the power
Customizing DSO Nano User Interface

DSO Nano is open source based, customizing the user interface is much easier than you thought. By linking the new UI to default variables and constants, you can build an individual interface yourself.

Grid

The background of the DSO is grid, it helps user to measure the waveform on the screen. Now the DSO have 8X10 grids, and each grid is 25X25 pixel. The entire grid is 300X200 pixels, here is where the screen displays the waveform. To make more space for displaying another information, you can modify the grid into a smaller size, but it needs to be the times of 50 pixel.

You can modify the grid in the FUNction.h. Just change the definition of the below you can move the grid to any position and change its size:

```c
#define X_SIZE    250
#define Y_SIZE    200
#define MIN_X     3
#define MIN_Y     24
#define MAX_X     (X_SIZE + MIN_X)
#define MAX_Y     (Y_SIZE + MIN_Y)
```

Character

DSO has a font library in Lcd.c, just modify the font library you can change another typeface of character to display, and you can add more figure into the library to display, like "→".

```c
//==================== font library
unsigned const short Char_Dot[760] = //744 12x6
0x0000,0x0000,0x0000,0x0000,0x001C,0x0020,0x0040,/*"*/
```
Character string display function

You can find this function in the Lcd.c and use it you can show a string on the screen with any color and on any position.

```c
/* Display_Str: display the string in assigned position
   Input: X,Y,Color,Displaymode,string */

void Display_Str(unsigned short x0, unsigned short y0, unsigned short Color, unsigned char Mode, unsigned const char *s)
{
    while (*s!=0) {
        unsigned const short *scanline=Char_Dot+((*s-0x22)*6);
        for(i=0;i<6;++i){
            ..........
            for(j=0;j<12;++j){
                ..........
                if(*s==0x21) x0 +=3;
                else  x0 += 6;
                ..........
        }
        ..........
        ..........
        unsigned short x0: X coordinate (0~319)
        unsigned short y0: Y coordinate, (0~239)
        unsigned short Color: color (will be reference in next section)
        unsigned char Mode: display mode (PRN: normal; INV :Invert)
        unsigned const char *s: String
    }
}
```

Dot

You can use the two functions to drop a dot with any color in any position.

- `Point_SCR(x, y);` // X coordinate (0~319) Y coordinate, (0~239)
- `Set_Pixel(color);` //drop a color in the pixel set above

Menu

The entire button signal is put into the Key_Buffer. And you can read the key value to judge which key be pressed.

- `KEYCODE_PLAY`
- `KEYCODE_LEFT`
- `KEYCODE_RIGHT`
- `KEYCODE_DOWN`
- `KEYCODE_UP`
- `KEYCODE_MANU`

In the main.c, you can fine the code below. And modify the code here you can define a new menu for your DSO. The menu is made up by a loop.

```c
Switch(Item) {
    case SYNC_MODE: //Menu name
```
if(Key_Buffer==KEYCODE_LEFT) Item=Y_VERNIER_2; //to forward menu
if(Key_Buffer==KEYCODE_RIGHT) Item=Y_SENSITIVITY //to next menu
if(Key_Buffer==KEYCODE_DOWN){ //the operation
 if
 if(Key_Buffer==KEYCODE_UP){//the operation

} break;
}

case Y_SENSITIVITY:
 break;
}

In the Function.h you can fine the define for every menu, the operation function is in the Function.c. You can add the new menu to create new function for you DSO.

#define SYNC_MODE 0
#define Y_SENSITIVITY 1
#define X_SENSITIVITY 2
#define Y_POSITION 3
#define MEASUR_KIND 4
#define POWER_INFOMATION 5
#define TRIG_SENSITIVITY 6
#define TRIG_SLOPE 7
#define INPUT_ATTENUATOR 8
#define SAVE_WAVE_CURVE 9
#define LOAD_WAVE_CURVE 10
#define OUTPUT_FREQUENCY 11
#define X_VERNIER_2 12
#define X_VERNIER_1 13
#define X_POSITION 14
#define RUNNING_STATUS 15
#define DELTA_T 16
#define Y_VERNIER_2 17
#define Y_VERNIER_1 18
#define TRIG_LEVEL 19
#define VERNIERS 20
#define WINDOW_AREA 21

Color

In the Ldc.h you can fine the definition for every color, just modify the definition you can change the color, and you can add the color define here to make your interface more colorful.

#define WHITE 0xFFFF //wite: B = F800, G = 07E0, R = 001F
#define PANEL 0xFFE0 //panel: B = F800, G = 07E0, R = 0000
#define RED 0x001F //red: B = 0000, G = 0000, R = 001F
#define GRN 0x07E0 //green: B = 0000, G = 07E0, R = 0000
#define YEL 0x07FF //yellow: B = 0000, G = 07E0, R = 001F
#define GRID 0x738E //gray: B = 7000, G = 0380, R = 000E
#define CURVE 0x0F8E // green: B = 0001, G = 0780, R = 000E
#define MODEL 0xC05E // purple: B = C000, G = 0040, R = 001E
#define LINE 0xE79F // white: B = E000, G = 0780, R = 001F
#define BLACK 0x0000 //black: B = 0000, G = 0000, R = 0000
For example:
 Point_SCR(2, 1);
 Set_Pixel(YEL);
 Will drop a yellow dot in the (2,1) pixel.
 And modify the
 \#define GRID 0x07E0 //green
 The grid will be change to green color.
Ok, now you can start working with your individual interface now. Have fun!

Regards
FreeZinG
01.06.2010