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tionAbstra
tOne approa
h to reverse engineering is to par-tially automate sub
omponent extra
tion, improve-ment and subsequent re
ombination. Two previouslyproposed automated te
hniques for supporting thisa
tivity are sli
ing and 
on
ept assignment. How-ever, neither is dire
tly appli
able in isolation; sli
ing
riteria (sets of program variables) are simply too lowlevel in many 
ases, while 
on
ept assignment typi-
ally fails to produ
e exe
utable sub
omponents.This paper introdu
es a uni�
ation of sli
ing and
on
ept assignment whi
h exploits their 
ombined ad-vantages, while over
oming their individual weak-nesses. Our `
on
ept sli
es' are extra
ted usinghigh level 
riteria, while produ
ing exe
utable sub-programs. The paper introdu
es three ways of 
om-bining sli
ing and 
on
ept assignment and algorithmsfor ea
h. The appli
ation of the 
on
ept sli
ing al-gorithms is illustrated with a 
ase study from a large�nan
ial organisation.1 Introdu
tionFor program 
omprehension and reverse engineer-ing it is important to have automated te
hniquesfor extra
ting exe
utable sub
omponents a

ordingto high level extra
tion 
riteria. These 
omponentsneed to be semanti
ally related to the original (sothat they 
an be exe
uted in isolation), while the
riteria for sele
tion may need to identify disparatese
tions of diverse 
ode whi
h will have to be mar-ried together. Therefore, the problem is to be able toautomati
ally produ
e programs whi
h answer ques-tions of the form: Given an original program, 
on-stru
t the simplest program that, for example per-forms the same master �le update operation or whi
h
loses down the rea
tor under the same 
onditions.Program sli
ing and 
on
ept assignment are auto-mated sour
e 
ode extra
tion te
hniques that take a


riterion and program sour
e 
ode as input and yieldparts of the program's sour
e 
ode as output. There-fore, they suggest themselves as natural 
andidatesolutions to this problem. Sli
ing has the advantagethat the extra
ted 
ode it produ
es 
an be exe
utedas a program in its own right, but the disadvantagethat the 
riterion must be expressed at the low levelof program variables. Con
ept assignment has theadvantage that the extra
tion 
riterion is expressedat just the right level (in terms of 
on
epts su
h as`master �le', `error re
overy' and `log update'), butthe disadvantage that the 
ode fragments it extra
ts
annot be 
ompiled and exe
uted as a separate pro-gram. Thus, ea
h te
hnique over
omes the diÆ
ultyasso
iated with the other.This paper shows how sli
ing and 
on
ept assign-ment 
an be 
ombined to produ
e better results thaneither is 
apable of individually. The 
ontributionsof this paper 
an be summarised as follows.� A framework for 
ombining Sli
ing and Con
eptAssignment is introdu
ed� Algorithms are introdu
ed for{ Exe
utable Con
ept Sli
ing{ Key Statement Analysis{ Con
ept Dependen
y Analysis� The appli
ation of the 
on
ept sli
ing approa
hto reverse engineering is illustrated with a 
asestudyThe rest of the paper is organised as follows. Se
-tion 2 brie
y reviews sli
ing and 
on
ept assignmentto make the paper self-
ontained. It 
an safely beskipped by a reader familiar with both te
hniques.Se
tion 3 presents a framework for unifying sli
-ing and 
on
ept assignment, suggesting three newte
hniques whi
h 
ombine sli
ing with 
on
ept as-signment. Algorithms for these three te
hniques:1

Mirrored By: 

www.siliconinvestigations.com 

For more information, call us - 920-955-3693



Exe
utable Con
ept Sli
ing (ECS), Key StatementAnalysis (KSA) and Con
ept Dependen
y Analysis(CDA) are introdu
ed in se
tions 4, 5 and 6 respe
-tively. Se
tion 7 presents a 
ase study involving a�nan
ial payment system, whi
h illustrates the useof the 
on
ept sli
ing algorithms introdu
ed in se
-tions 4, 5 and 6. Se
tion 8 
on
ludes and Se
tion 9gives dire
tions for future work.2 Ba
kgroundThis se
tion provides some ba
kground, de�nitionsand notation for sli
ing and 
on
ept assignmentwhi
h are used in the remainder of the paper.2.1 Sli
ingProgram sli
ing [31℄ is de�ned with respe
t to a `sli
-ing 
riterion'. Sli
ing uses dependen
e analysis toisolate those parts of a program that potentially af-fe
t the sli
ing 
riterion.Traditionally `parts of the program to be isolated'have been restri
ted to statements and predi
atesand the sli
ing 
riterion has been de�ned in termsof a set of variables and a point at whi
h their val-ues are of interest. More re
ent work has extendedtraditional sli
ing by 
onsidering novel sli
ing 
rite-ria involving 
onditions and test adequa
y properties[5, 15℄. The te
hniques for isolation of statementshave also broadened from statement deletion to al-low for more general transformation [4, 12, 30℄.This paper will be 
on
erned solely with syntax-preserving stati
 sli
ing, whi
h will be used both tore�ne and to extend the results of 
on
ept assign-ment. In all 
ases, sli
es will be 
onstru
ted for a setof nodes of a program's Control Flow Graph (CFG).This means that the sli
ing 
riterion will simply bea set of n statements fs1; : : : ; sng.De�nition 1 (Sli
e)A sli
e of a program p for the sli
ing 
riterionfs1; : : : ; sng is an exe
utable subprogram, s, 
on-stru
ted from p by statement deletion, su
h thats behaves identi
ally to p with respe
t to the se-quen
e of values 
omputed at ea
h of the statementsin fs1; : : : ; sng. The sli
e of a program p w.r.t a setof statements S will be denoted Sli
e(p; S).This de�nition of a sli
e is essentially the exe-
utable version of the de�nition adopted by the Sys-tem Dependen
e Graph approa
h of Horwitz et al.[16℄. Typi
ally, work on the System Dependen
eGraph (SDG) de�nes it to 
ontain a set of `�nal use'verti
es for ea
h variable. The SDG is so-
onstru
tedto guarantee the existen
e of su
h a vertex for ea
hvariable. This allows sli
es to be 
onstru
ted for avariable in terms of its �nal use vertex.

De�nition 2 (Final Use Vertex)FinalUse(p; v) is the �nal use vertex of variable v inprogram p.The dependen
e graph itself 
an be useful inanalysing the distan
e between a sli
e node and someother node in the sli
e.De�nition 3 (SDG Distan
e)Given statements s and s0 of a program p, the dis-tan
e, Dist(p; s; s0) is the length of the shortest pathbetween s and s0 in the SDG of p. If there is no pathfrom s and s0 in the SDG of p, then Dist(p; s; s0) isunde�ned.2.2 Con
ept AssignmentThe 
on
ept assignment1 problem is de�ned as \apro
ess of re
ognising 
on
epts within a 
omputerprogram and building up an `understanding' of theprogram by relating re
ognised 
on
epts to portionsof the program, its operational 
ontext and to one an-other [3℄." It 
an be undertaken by intelligent agents(tools), with three distin
t approa
hes being adopted[3℄:1. Highly domain spe
i�
, model driven, rule-based question answering systems that dependon a manually populated database des
ribingthe software system. This approa
h is typi�edby the Lassie system [7℄.2. Plan driven, algorithmi
 program understandersor re
ognisers. Two examples of this typeare the Programmer's Apprenti
e [28℄, andGRASPR [32℄.3. Model driven, plausible reasoning systems. Ex-amples of this type in
lude DM-TAO [3℄, IRENE[17℄, and HB-CA [9, 10℄.Biggersta� et al. 
laim that systems using ap-proa
hes 1 and 2 are good at 
ompletely deriv-ing 
on
epts within small-s
ale programs but 
annotdeal with large-s
ale programs due to overwhelming
omputational growth. Approa
h 3 systems 
an eas-ily handle large-s
ale programs sin
e their 
ompu-tational growth appears to be linear in the lengthof the program under analysis but they su�er fromapproximate and impre
ise results [3℄.We are 
on
erned with plausible reasoning systems(
ategory 3 above) and all referen
es to 
on
ept as-signment in this paper should be taken as referringto this kind of system. Plausible reasoning systemsare of parti
ular interest be
ause they are s
alable1Note: 
on
ept assignment is a wholly di�erent te
hnologyfrom formal 
on
ept analysis (FCA) (sometimes just 
alled`
on
ept analysis').2



and are theoreti
ally 
apable of assigning higher-level 
on
epts than some of the other approa
hes.The assignment is based on the eviden
e available inthe 
ode being analysed from whi
h a `best guess' istaken; reasoning is thus based on plausibility ratherthan dedu
tion. In addition to the 
ommon appli
a-tion of 
on
ept assignment in helping maintainers to
omprehend programs, Cimitile et al. [6℄ have sug-gested it as a way of validating the adequa
y of a
andidate 
riterion when identifying suitable mod-ules for reuse.Hypothesis-Based Con
ept Assignment (HB-CA)[9, 11℄ is one of the most re
ent examples of aplausible-reasoning 
on
ept assignment approa
h. Itdeals with the part of the 
on
ept assignment prob-lem that involves relating re
ognised 
on
epts to por-tions of a program. HB-CA uses a simple knowledgebase to en
ode the relationships between 
on
eptsand potential eviden
e for them in sour
e 
ode. It isthis approa
h that we propose to 
ombine with pro-gram sli
ing. The following de�nition introdu
es thenotation we will use to denote 
on
ept assignment.De�nition 4 (Con
ept)A 
on
ept 
, named n, of a program p is 
onstru
tedwith respe
t to a domain model D. The 
on
ept 
on-sists of a tagged 
ontiguous sequen
e of 
ode from p,for whi
h there is eviden
e (a

ording to D) that thesequen
e implements the 
on
ept named n. For a
on
ept 
, Tag(
) refers to the name of the 
on
ept
, while Statements(
) refers to its statements. Fora program p and domain model D, Con
epts(p;D)refers to the set of all 
on
epts assigned to p a

ord-ing to D.Figure 1 shows a fragment of a domain model(whi
h will be used in the 
ase study in Se
tion 7). Ina domain model, 
on
epts are 
lassi�ed into a
tionsand obje
ts and may be 
omposed or spe
ialised.Ea
h 
on
ept has a number of indi
ators whi
h rep-resent the potential sour
e 
ode eviden
e for the 
on-
ept. For every pie
e of sour
e 
ode eviden
e that isfound, a hypothesis is generated for the appropriate
on
ept. Segments (
ontiguous groups of hypothe-ses de�ning a 
ontiguous region of sour
e 
ode) areformed from the resulting list of hypotheses using
on
eptual density and program syntax to de�ne theboundaries. The dominant 
on
ept (i.e. the one forwhi
h there is most eviden
e) in ea
h segment is as-signed to the appropriate region of sour
e 
ode.3 A Framework for Unifying Sli
-ing and Con
ept AssignmentThis se
tion presents a framework of notation andrequirements for developing a 
ombined sli
ing and


on
epts approa
h. The term `
on
ept sli
e' will beused to refer to the result of any 
ombination of sli
-ing and 
on
ept assignment. Figure 2 depi
ts, inoverview, the three types of 
on
ept sli
e 
onsideredin this paper.3.1 Exe
utable Con
ept Sli
ing (ECS)Exe
utable Con
ept Sli
ing (ECS) is the basi
 start-ing point for the approa
h we advo
ate. An ECS isformed using sli
ing to augment the results of 
on-
ept assignment to make the 
on
ept an exe
utablesub-program.More formally, an algorithm for ECS is a fun
tionwhi
h takes a program, p, and a domain model, D,and produ
es a set of exe
utable sub-
omponents,one per 
on
ept in the program p a

ording to D.Ea
h returned 
on
ept must be exe
utable and, whenexe
uted, the 
omputation 
aptures the 
omputationon the asso
iated 
on
ept of p w.r.t. D. In formingan ECS, the set of statements tagged with the 
on-
ept name may no longer be 
ontiguous.The end of the segment identi�ed in 
on
ept as-signment will be treated as an end of program ver-tex. For example, in the 
ase of COBOL, this 
an bea
hieved by inserting a STOP RUN statement at theend of the segment of 
ode assigned to the 
on
ept.The ECS will be further re�ned using key state-ment analysis, as des
ribed in the next se
tion.3.2 Key Statement Analysis (KSA)Given a 
on
ept (and/or 
on
ept sli
e), some state-ments will be more important than others; they will
ontribute more to the 
omputation embodied bythe 
on
ept. The more important statements areregarded as the `key' statements of the 
on
ept. KeyStatement Analysis (KSA) is an analysis step whi
haims to determine the key statements in a 
on
ept.The approa
h 
an be applied to both 
on
epts andto 
on
ept sli
es.More formally, an algorithm for KSA is a fun
tionwhi
h takes a program and a 
on
ept assigned withinit, and returns a fun
tion whi
h des
ribes the rela-tive weight of ea
h statement in the 
on
ept. Theweight is represented as a fun
tion, form statements,Statement, to real numbers, IR. If the fun
tionreturned is f then f(s), denotes the weight of state-ment sA simple approa
h identi�es a subset of the state-ments as being key. A more elaborate approa
h, as-signs weights to ea
h statement, indi
ating relativekeyness. These weightings will be real numbers inthe range 0 to 1 and so the simple 
ase is merely aspe
ial 
ase in whi
h the only two out
omes are 0and 1.3
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Figure 1: A Fragment of a Domain Model3.3 Con
ept Dependen
y Analysis (CDA)To perform 
on
ept assignment, an initial domainmodel is 
reated by the software engineer (basedon their experien
e). This model ought to be im-proved as the method is used. Unfortunately, usingtraditional 
on
ept assignment, there is no guidan
eto indi
ate whi
h 
on
epts o

ur together frequentlynor to elu
idate the inter-
on
ept relationships whi
hevolve as the analysis pro
ess iterates. Therefore,the model is improved only by serendipity and in apoorly de�ned ad-ho
 manner. A 
learly de�ned andtool-assisted feedba
k approa
h is required to sup-port the dis
iplined and systemati
 evolution of themodel, fa
ilitating pro
ess improvement over su

es-sive analyses.More formally, an algorithm for Con
ept Depen-den
y Analysis (CDA) takes a program and a domainmodel and produ
es a 
on
ept dependen
e graph.A 
on
ept dependen
e graph is a dire
ted graph,in whi
h the nodes are 
on
epts and the edges areweighted. Thus, formally, the 
on
ept dependen
ygraph is a set of triples, su
h that triple (
; 
0; w) isin the graph i� there is an edge from 
on
ept 
 to 
0with weight w. The 
on
ept graph is thus a weightedrelation on the set of 
on
epts.3.4 Prin
ipal VariablesIn order to form 
on
ept sli
es for KSA and CDA itwill be ne
essary to determine the prin
ipal variablesof an arbitrary set of statements. The prin
ipal vari-ables are those whi
h might be 
onsidered to be theresult of the set of statements.

As Bieman and Ott point out in their work onsli
e-based 
ohesion measurement [18, 25℄, the de
i-sion as to what variables are `prin
ipal' is somewhatarbitrary; 
hanging it 
an, of 
ourse, alter the resultsof the algorithms upon whi
h it is based. Therefore,the de�nition of what 
onstitutes a prin
ipal variableshould be treated as a parameter of the 
on
ept sli
-ing approa
h advo
ated here. The de�nition belowwill be used as a working de�nition for the 
ase studyin Se
tion 7, and is derived from Bieman and Ott.De�nition 5 (Prin
ipal Variable)A variable v in a set of statements S is a prin
ipalvariable i� it is either� global and assigned in S� 
all-by-referen
e and assigned in S� the parameter to an output statement of SGiven a set of statements S, PV (S) will be usedto denote the set of prin
ipal variables of S.4 ECS AlgorithmThe ECS algorithm is presented in Figure 3. Thealgorithm is straightforward. The statements of the
on
ept form the set of statements for the sli
ing
riterion. Sli
ing on these statements adds to the
on
ept, all statements of the original program re-quired to ensure that the 
on
ept statements faith-fully mimi
 (in the 
on
ept sli
e) their behaviour inthe original program.4



Name Purpose Type Potential Appli
ationsExe
utable Con
ept Sli
-ing (ECS) To form an exe
utablesub-
omponent Inter-Con
ept Analysis Reuse and re-engineeringKey Statement Analysis(KSA) To re�ne a 
on
ept Intra-Con
ept Analysis Comprehension and re-verse engineeringCon
ept Dependen
yAnalysis (CDA) To identify inter-
on
eptrelationships Inter-Con
ept Analysis Domain modelimprovementFigure 2: Overview of the Con
ept Sli
ing Frameworkfun
tion ECS(Program p, DomainModel D)returns: set of Programlet f
1; : : : ; 
ng = Con
epts(p;D)for ea
h 
i 2 f
1; : : : ; 
nglet ECSi = Sli
e(p; Statements(
i))let Tag(ECSi) = Tag(
i)endforreturn fECS1; : : : ; ECSngFigure 3: The Exe
utable Con
ept Sli
ing Algorithm5 KSA AlgorithmA simple KSA algorithm is presented in Figure 4.The fun
tion KSABO takes a program and a 
on-
ept assigned within it and returns a fun
tion whi
hdes
ribes the relative weight of ea
h statement in the
on
ept. In this 
ase, the returned result is either 0or 1, with 1 signifying that the statement is a keystatement and 0 signifying that it is not.The idea is to use the set of prin
ipal variables inthe 
on
ept to form a set of sli
es. The interse
tion ofthese sli
es 
ontains the statements whi
h 
ontributeto the 
omputation of every prin
ipal variable; inother words, the key statements of the 
on
ept.We 
all this the `BiemanOtt-style' algorithm, be-
ause it is inspired by Bieman and Ott's work onmeasuring 
ohesion using sli
ing [2, 18, 25, 26, 27℄.Spe
i�
ally, the interse
tion of sli
es on prin
ipalvariables is the set used to 
ompute the `Tightness'metri
 introdu
ed by Ott and Thuss [26℄. Tightnesswas later developed into a theory of 
ohesion mea-surement based on sli
ing [2, 25℄.An alternative KSA algorithm is presented in Fig-ure 5. In this approa
h, the returned value asso
i-ated with a statement is a real number, rather thansimply a value in f0; 1g. The value assigned to astatement represents the dire
tness of dependen
ebetween it and the prin
ipal variables of the 
on-
ept. The weight for statement s is 
omputed as thelength of the shortest path from s to a �nal use ver-tex of a prin
ipal variable, normalized with respe
t

fun
tion KSABO(Program p, Con
eptSli
e 
)returns: fun
tion from Statement to f0; 1gfor ea
h variable vi in PV (
)let si = Sli
e(p; fFinalUse(Statements(
); vi)g)endforlet Tight = Ti silet KS = Statements(
) \ T ightreturn �x: if x 2 KS then 1 else 0Figure 4: Key Statement Analysis `BiemanOtt' Styleto the length of the longest a
y
li
 path in the pro-gram's SDG2, su
h that statements with KSA values
loser to 1 are more `key' and those with KSA val-ues 
loser to 0 are `less key'. This gives a real valueweighting between 0 and 1 for ea
h statement in the
on
ept. The algorithm builds up the fun
tion F tobe returned, adding a maplet for ea
h statement siwhi
h maps si to its weight.Observe that, be
ause Dist(s; s0; p) is unde�ned ifthere is no path from s to s0 in the SDG of p, theweight of a statement is also unde�ned when there isno path from it to the �nal use vertex of any prin
ipalvariable. For any su
h an `un
onne
ted' statement,the unde�nedness of the weight will alert the engi-neering to a possible anomaly; why is su
h a state-ment in a 
on
ept if it has no e�e
t on any prin
ipalvariable? We 
all this algorithm the `BallEi
k' algo-rithm be
ause it is inspired by Ball and Ei
k's workon the SeeSli
e proje
t[1℄.6 CDA AlgorithmAn algorithm for produ
ing a weighted Con
ept De-penden
y Graph is presented in Figure 6. Weightingswill be allo
ated a

ording to the amount of 
ompu-2In the algorithm, the SDG is used, but there may be analy-ses for data-intensive programs, for whi
h it would be edifyingto 
onsider the repla
ement of the SDG with the Data Depen-den
e Graph (DDG) and (for 
ontrol sensitive 
on
epts) touse the Control Dependen
e Graph (CGD).5



fun
tion KSABE(Program p, Con
eptSli
e 
)returns: fun
tion from Statement to IRlet F = fglet N be the longest a
y
li
 path in the SDG of pfor ea
h si in Statements(
)for ea
h vj in PV (
)let dij = Dist(p; si; F inalUse(Statements(
); vj))endforlet Di = minj dijlet F = F [ fsi 7! N�DiN gendforreturn FFigure 5: Key Statement Analysis `BallEi
k' Styletation (normalized by 
on
ept size) whi
h one 
on-
ept 
ontributes to the 
omputation of another. To
ompute this we use an approa
h based on the sli
e-based 
oupling metri
 of Harman et al. [14℄. Thisapproa
h is a 
oupling metri
, similar to the 
ohesionmetri
s of Bieman and Ott [25℄.The metri
 is 
omputed using the prin
ipal vari-ables of a 
on
ept. The union of sli
es (restri
tedto 
on
ept 
0) is then formed. This is the part of
0 whi
h 
ontributes to the 
omputation of the prin-
ipal variables of 
. The weight of the edge from
0 to 
 is 
onsidered to be the relative amount of 
0(normalized by the size of 
0) whi
h lies in the unionof sli
es. This normalized `amount of 
omputation'forms a 
rude way of determining the amount of 
0whi
h 
ontributes to the 
omputation denoted by 
.The algorithm starts with an empty graph (G) andgoes through ea
h 
on
ept (the i loop) adding inweightings from ea
h of the other 
on
epts (the jloop) in the graph. For ea
h pair of 
on
epts, theunion of sli
es on prin
ipal variables, Comp, is 
om-puted and this is used to determine the 
ontribution,Cont, that one 
on
ept makes to the other. This 
on-tribution is reformulated into a metri
 value between0 and 1, by 
al
ulating its size relative to the size ofthe whole 
ontributing 
on
ept.7 A Case StudyThis se
tion presents a 
ase study whi
h illustratesthe appli
ation of the four algorithms introdu
ed inthe paper. The program 
on
erned (see Figure 8) isbased on one drawn from a large �nan
ial servi
es or-ganisation and, among other things, 
al
ulates mort-gage repayments. In the example, we have used alibrary of 25 
on
epts and their asso
iated eviden
eto generate 
on
ept bindings and segments.Suppose that the mortgage produ
ts of the organi-

fun
tion CDA(Program p, DomainModel D)returns: Con
eptGraphlet G = fgfor ea
h 
i 2 Con
epts(p;D)for ea
h 
j 2 Con
epts(p;D) (j 6= i)for ea
h variable vk in PV (
j)let sk = Sli
e(p; fFinalUse(
j; vk)g)endforlet Comp = Sk sklet Cont = Comp \ Statements(
i)let M = jContjj
ijlet G = G [ f(
i; 
j ;M)gendforendforreturn GFigure 6: The Con
ept Dependen
y Analysis Algo-rithmsation are to be overhauled. The lega
y system whi
h
omputes mortgage payments is to be reverse andre-engineered. Spe
i�
ally, 
onsider the s
enario inwhi
h an engineer is looking to lo
ate the 
ode whi
h
al
ulates mortgage payments to re-use it (possiblyin an amended form) in the re-engineered system.Thus, the reverse engineer is seeking, initially, toretain the 
ode for 
al
ulating mortgage interest,while dis
arding the remainder of the program. Anatural step would be to identify the 
ode whi
himplements mortgage 
al
ulations. Unfortunatelypure sli
ing 
annot help unless the engineer knowswhi
h variables are important for this 
omputation.The engineer may be only partially familiar with the
ode and, therefore, unable to sele
t a suitable vari-able or set of variables. Con
ept assignment 
anbe used to produ
e a set of 
ontiguous statementsfor whi
h there is eviden
e that the 
ode performsa
tions relating to mortgage interest, but the en-gineer 
annot simply extra
t and reuse this 
ode,sin
e the 
ode sequen
e is not an exe
utable sub-program. However, by forming the ECS for theCal
ulate:MortgageInterest 
on
ept the reverseengineer 
an extra
t the 
ode of interest as a exe-
utable sub-program.Sele
ting the `
al
ulate mortgage interest' 
on
eptprodu
es the 
on
ept highlighted by light shading inthe left-hand 
olumn of Figure 8. Figure 1 depi
tsthe fragment of the domain model used to lo
ate this
on
ept. Using the algorithm in Figure 3 the ECSfor 
al
ulate mortgage interest additionally identi�esthe boxed lines shown in the �gure. Noti
e that theline of 
odeMOVE '010' TO APS-RECORD-IN.6



is not in the ECS, even though it assigns a valueto one of the variables (APS-RECORD-IN) referen
edby the 
on
ept. This is be
ause the value assigned isimmediately overwritten by the PERFORM of the 
odefor C00-READ-APS.The reverse engineer might also analyse the 
on-
ept using Key Statement Analysis. The prin
ipalvariables of the 
on
ept are:W-RED-INT-4W-RED-INTUsing the BiemanOtt style KSA algorithm (Fig-ure 4), the interse
tion of sli
es for these twovariables 
onsists of the 
ode whi
h 
omputesW-RED-INT-4, sin
e this 
ode is a subset of the 
odewhi
h 
omputes W-RED-INT. We might think of thisanalysis as revealing a sub-
on
ept (the unroundedresult) within the 
al
ulate mortgage 
on
ept.Now, suppose instead of applying KSA to the 
on-
ept, the reverse engineer, instead, 
hooses to applyit to the ECS. The prin
ipal variables of the ECSare: W-RED-INT-4OUT-OUTSTANDINGW-RED-INTAPS-RECORD-INFor these four variables, the interse
tion of the 
or-responding sli
es (Tight) is empty, indi
ating that nostatements are key in the ECS a

ording to the Bie-manOtt style algorithm. This information is useful,be
ause it indi
ates that there is no 
ode in the ECSwhi
h is germane to all of the 
omputation. This sug-gests that there may be more than one 
on
ept im-plemented within the boundaries identi�ed by ECS.In this 
ase, the ECS happens to 
ontain a largepart of the Read:APSRe
ord 
on
ept and this shouldprobably be separated out. (The possibility of mul-tiple 
on
ept binding is dis
ussed brie
y as an issuefor future work.)At this point, the reverse engineer might 
hooseto try KSA with a slightly di�erent set of prin-
ipal variables, based upon the observation thatAPS-RECORD-IN is an obvious `odd one out'; it is
learly an input variable (even though it is bothglobal and assigned and, therefore, a `prin
ipal vari-able' a

ording to De�nition 5). For the remain-ing three variables, the KSA highlights pre
iselythe 
omputation on OUT-OUTSTANDING. That is, thekey statements identi�ed are the three boxed state-ments of the se
tion S10-HOLIDAY-CHECK. This sig-ni�es that the 
ag APS-HOL-MONTH is 
ru
ial. Hav-ing observed this, the reverse engineer might 
he
kto see what the 
ag APS-HOL-MONTH denotes. A lit-tle (human) analysis will reveal that this feature ofthe system implements `payment holidays'. This is

a produ
t feature aimed at in
reasing take up andmaking the produ
t more attra
tive. It allows the
lient to skip a payment for one month, by extend-ing the period of payments by one month.Of 
ourse, in the post-overhaul set of produ
ts,the payment holiday feature may not be in
luded(or it may be in
luded but behave di�erently). Theidenti�
ation of the mortgage holiday 
omputationas a set of key statements of the 
on
ept alerts thereverse engineer to the importan
e of this 
ode indetermining the mortgage payments and identi�esthe se
tion of 
ode whi
h needs to be 
onsidered.In Se
tion 5 an alternative, and more �ne-grained,KSA algorithm was introdu
ed. This approa
h usesdistan
e (in the SDG) from the �nal use verti
es ofprin
ipal variables to determine a weight for a state-ment, giving a relative measure of keyness. To seehow this works, 
onsider the 
on
ept for mortgagepayment. The 
ode segment for the 
on
ept is 
utout and depi
ted in Figure 7, along with its CFG andthe 
orresponding SDG for the two prin
ipal vari-ables.Dependen
e is tra
ed ba
kward from the �nal useverti
es for the two prin
ipal variables W-RED-INT-4and W-RED-INT. The longest a
y
li
 path in the SDGis 6 nodes long (from the �nal use of W-RED-INT, to 7,6, 2, 5, 4). Nodes 7 and 6 are only a single edge awayfrom a �nal use and so the shortest path is length 2.Therefore both nodes re
eive a KSA value of 46 . Theshortest path from nodes 5, 2 and 1 is 3 nodes longand so they re
eive a KSA value of 36 . Node 4 is next,with a shortest path of length 4 and a KSA value of26 and �nally node 3 has a KSA value of 16 .The values in themselves are largely immaterial;we 
an, at best, be measuring on an ordinal s
ale of`dire
tness of dependen
e' [29℄. What is importantis the order they introdu
e on nodes. The most keystatements are those whi
h de�ne the values of in-terest (nodes 6 and 7). The next most key are thosewhi
h dire
tly 
ontrol the nodes whi
h de�ne the val-ues of interest and those whi
h feed data dire
tly tothem. As we move further away from the �nal useverti
es, we rea
h statements whi
h have a progres-sively less dire
t impa
t upon the 
omputation of the�nal value of the prin
ipal variables. It is this obser-vation whi
h motivates the determination of `relativekeyness' using the `BallEi
k' style approa
h.Finally, suppose that the reverse engineer has ex-tra
ted several 
on
epts3. One of the other 
on
eptswhi
h is identi�ed is the Write:APSRe
ord 
on
eptshown in the darker shading in the top right-hand
olumn of Figure 8.The reverse engineer may be interested in the re-lationship between this 
on
ept and the 
al
ulate3Applying HB-CA to this example a
tually reveals 10 
on-
epts, but there is insuÆ
ient spa
e here to dis
uss them allin detail.7



1 PERFORM S10-HOLIDAY-CHECK.A00-010.* READ APS RECORD2 PERFORM C00-READ-APS.3 IF APS-EOF = END-OF-FILEGO TO A00-090.* CHECK FOR HORIS4 IF APS-HORIS NOT = 'AH'GO TO A00-080.* CHECK FOR MORTGAGE INTEREST5 IF APS-M-INT = ZEROESGO TO A00-080.A00-020.* CALCULATE NEW REDUCED MORTGAGE INTEREST6 COMPUTE W-RED-INT-4 =OUT-OUTSTANDING - (W-TAX-RATE * OUT-OUTSTANDING).7 COMPUTE W-RED-INT ROUNDED = W-RED-INT-4 + 0.STOP RUN.
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Control Dependence

Data DependenceCon
ept for Cal
ulate Mortgage Payment Control Flow Graph (CFG) System Dependen
e Graph (SDG)Figure 7: Exe
utable Con
ept Sli
e for Cal
ulate:MortgageInterestmortgage interest 
on
ept. Su
h a relationship isuseful in re�ning the domain model, whi
h 
ontainsinter-
on
ept relationships. It also provides a 
rudeform of assessment of the impa
t of 
hanges to one
on
ept upon another and the level of `feature inter-a
tion' between 
on
epts. The prin
ipal variables ofthe `write APS re
ord' 
on
ept are:APS-RECORD-OUTCHECKING-SLIPUsing the CDA algorithm of Figure 6, the sli
eon these two variables 
ontains only one line of the
al
ulate mortgage interest 
on
ept:PERFORM C00-READ-APSIn 
omputing the relative weight of the edge fromthe 
al
ulate mortgage interest 
on
ept to the `writeAPS re
ord' 
on
ept, we fa
e the familiar issue ofhow to `
ount' lines of 
ode [8, 29℄. We have 
hosen toadopt the (relatively) un
ontroversial step of 
ount-ing Non Comment Sour
e Lines (NCSL). However,as with the determination of prin
ipal variables, this
hoi
e is a parameter to our approa
h and is adoptedhere merely for illustration. There are nine NCSLsin the 
al
ulate mortgage interest 
on
ept and so theweight of the edge from the 
al
ulate mortgage in-terest 
on
ept to the `write APS re
ord' 
on
ept is19 .We have already 
omputed the sli
e for the prin
i-pal variables of the 
al
ulate mortgage interest 
on-
ept. The sli
e was used to form the ECS earlier and
onsists of the additional boxed lines in Figure 8.We 
an see that three of these boxed lines are in the`write APS re
ord' 
on
ept. However, only one ofthem is a NCSL, while there are eight NCSLs in to-tal in the `write APS re
ord' 
on
ept. This gives the

weighting of the relationship from the `write APSre
ord' 
on
ept to the 
al
ulate mortgage interest
on
ept as 18 .In themselves these �gures are relatively meaning-less. However, by 
omputing similar weights for allthe 
on
epts in the system we obtain a weighted 
on-
ept dependen
e graph whi
h 
an be used to re�neour understanding of the domain model and 
ould,for example, form the input to a 
lustering tool su
has Bun
h [19, 21, 23℄.8 Con
lusionThis paper has shown how 
on
ept assignment andsli
ing 
an be 
ombined to perform uni�ed sour
e
ode extra
tion, whi
h extra
ts 
ode identi�ed by a
on
ept assignment 
riterion.The approa
h has the advantage (over pure 
on-
ept assignment) that the 
ode extra
ted is exe-
utable, be
ause of the use of sli
ing to augment theresults of 
on
ept assignment. It also has the advan-tage over sli
ing that the 
riterion for extra
tion isexpressed at a high level in terms of domain spe
i�
and `meaningful' 
on
epts su
h as `master �le' and`update re
ord'. By 
ontrast, pure sli
ing 
an onlyextra
t subprograms based upon low level 
riteria |sets of variables.The paper introdu
ed an algorithm for Exe
utableCon
ept Sli
ing (ECS), two algorithms for KeyStatement Analysis (KSA) and an algorithm forCon
ept Dependen
e Analysis (CDA). The appli
a-tion of these algorithms to reverse engineering wasdemonstrated using a 
ase study based on a Cobolmortgage 
al
ulation program taken from a large �-nan
ial servi
es 
ompany.8



9 Future WorkThis paper has introdu
ed novel de�nitions, nota-tion and ideas for unifying 
on
ept assignment andsli
ing. It has presented algorithms and illustratedtheir appli
ation, but there remains mu
h work tobe done in order to unlo
k the full potential of theuni�ed approa
h.9.1 Multiple Con
ept BindingCurrently, HB-CA assumes that there is only a single
on
ept represented in any se
tion of 
ode. This isunrealisti
, but it makes the problem more tra
table.KSA provides a possible vehi
le to analyse the stru
-ture of a 
on
ept to identify potential split points sothat the possible layering of multiple 
on
epts withina rejoin of 
ode 
an be 
onsidered.9.2 Extending Con
ept BoundariesThe plausible reasoning approa
h to 
on
ept assign-ment has been shown to produ
e good results [9℄,but, by its very nature, 
annot be guaranteed to iden-tify the 
orre
t 
on
ept extent in the 
ode. We haveused ba
kward sli
ing to �nd the 
ode ne
essary tomake the 
on
ept exe
utable. However, if HB-CAhas missed some subsequent statements, whi
h onlyget exe
uted after the identi�ed 
ode has been ex-e
uted, then these statements will form neither apart of the 
on
ept nor of the exe
utable 
on
eptsli
e. This does not mean that the ECS will bewrong; it simply means that it will 
apture only asub-
omponent of the 
omputation of the 
on
ept.To 
apture the full 
omputation, it may be possibleto augment the results of ba
kward sli
ing with someform of forward sli
ing [16℄.9.3 Con
ept Clustering AnalysisCon
ept Dependen
y Analysis produ
es a weightedgraph of 
on
epts, with the aim of identifying inter-
on
ept relationships. However, a question remains:how 
an we use the 
on
ept dependen
e graph todetermine whi
h 
on
epts are related? This prob-lem is very similar to the software modularization or
lustering problem [13, 19, 20℄. A tool like Bun
h[19℄ uses hill-
limbing to sear
h for good 
lusteringsof software modules based upon a `�tness' fun
tion.The �tness fun
tion is essentially a metri
 whi
hmeasures 
ohesion and 
oupling between modules ina 
luster. The metri
 has been su

essfully appliedto a number of real-world appli
ations [22, 24℄. In allexisting appli
ations the module dependen
e graphused was not weighted, but the metri
 used does
ater for weighted graphs and so there is no reason

not to use Bun
h to produ
e a 
lustering of 
on
eptsli
es.10 A
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... PROCEDURE DIVISION.A00-CONTROL SECTION.* INITIAL PROCESSINGA00-000.PERFORM S10-HOLIDAY-CHECK.MOVE '01' TO DL-INPUT-FORMAT.CALL 'DATEPRES' USING DATE-LINKAGE-PARMS.MOVE DL-OUT-DD-MM-CCYY TO H1-DATE.MOVE SPACES TO CHECKING-SLIP.MOVE '011' TO APS-RECORD-OUT.CALL 'GBAAZ0X' USING APS-RECORD-OUT.CALL 'GBABB0X' USING CHECKING-SLIP.MOVE '010' TO APS-RECORD-IN.A00-010.* READ APS RECORDPERFORM C00-READ-APS.IF APS-EOF = END-OF-FILEGO TO A00-090.* CHECK FOR HORISIF APS-HORIS NOT = 'AH'GO TO A00-080.* CHECK FOR MORTGAGE INTERESTIF APS-M-INT = ZEROESGO TO A00-080.A00-020.* CALCULATE NEW REDUCED MORTGAGE INTERESTCOMPUTE W-RED-INT-4 =OUT-OUTSTANDING - (W-TAX-RATE * OUT-OUTSTANDING).COMPUTE W-RED-INT ROUNDED = W-RED-INT-4 + 0.IF GBAIA110 = 'M'MOVE 12 TO W-FREQMOVE 0.12 TO W-FREQ-P.IF GBAIA110 = 'Q'MOVE 4 TO W-FREQMOVE 0.03 TO W-FREQ-P.COMPUTE W-RED-INT-2 = W-RED-INT / W-FREQ.SUBTRACT 0.0005 FROM W-RED-INT-2.COMPUTE W-RED-INT-3 ROUNDED = W-RED-INT-2 + 0.A00-030.MULTIPLY W-FREQ BY W-RED-INT-3.MOVE W-RED-INT-3 TO GBAOA191.EJECTIF GBAIA190 = SPACESGO TO A00-040.IF GBAIA191 = ZEROESGO TO A00-040.DIVIDE GBAOA191 BY GBAIA191 GIVING W-PERCENTAGE.IF W-PERCENTAGE GREATER THAN 1.03GO TO A00-040.IF W-PERCENTAGE LESS THAN 0.97GO TO A00-040.GO TO A00-070.A00-040.PERFORM C20-PRINT.A00-070.MOVE SPACES TO CHECKING-SLIP.MOVE GBAIA010 TO CS-POLICY.MOVE '2' TO CS-TYPE.MOVE GBAIA019 TO CS-STANDARD (1).MOVE GBAOA019 TO CS-STANDARD (2).CALL 'GBABB0X' USING CHECKING-SLIP.Key:Dark Shaded :Write:APSRe
ord 
on
eptLight Shaded : Cal
ulate:MortgageInterest 
on
eptBoxed : Extra 
ode in ECS for Cal
ulate:MortgageInterest

A00-080.PERFORM C10-WRITE-APS.GO TO A00-010.A00-090.MOVE '3' TO W-GBCM0133-2.* END OF JOB PROCESSINGCALL 'GBCM0133' USING APS-RECORD-INW-GBCM0133-2W-GBCM0133-3.MOVE END-OF-FILE TO APS-RECORD-OUT.CALL 'GBAAZ0X' USING APS-RECORD-OUT.MOVE END-OF-FILE TO CHECKING-SLIP.CALL 'GBABB0X' USING CHECKING-SLIP.A00-999.STOP RUN.EJECTC00-READ-APS SECTION.C00-000.* READ APS MASTER FILECALL 'GBAAY0X' USING APS-RECORD-IN.IF APS-EOF = END-OF-FILEMOVE HIGH-VALUES TO APS-RECORD-IN.C00-999.EXIT.SKIP3C10-WRITE-APS SECTION.* WRITE APS MASTER FILEMOVE '2' TO W-GBCM0133-2.CALL 'GBCM0133'USING APS-RECORD-OUT W-GBCM0133-2.CALL 'GBAAZ0X' USING APS-RECORD-OUT.C10-999.EXIT.SKIP3C20-PRINT SECTION.C20-000.IF A-LINENO LESS THAN 25GO TO C20-010.ADD 1 TO A-PAGENO.MOVE A-PAGENO TO H1-PAGE.MOVE C-1 TO P-CC.MOVE H1-HEADLINE TO P-LL.PERFORM S00-PRINT.MOVE WS-2 TO P-CC.MOVE H1-HEADLINE TO P-LL.PERFORM S00-PRINT.MOVE 0 TO A-LINENO.C20-010.MOVE WS-2 TO P-CC.MOVE GBAIA010 TO P1-KEY.MOVE P1-DATALINE TO P-LL.PERFORM S00-PRINT.MOVE SPACES TO P-LL.ADD 2 TO A-LINENO.C20-999.EXIT.EJECTS00-PRINT SECTION.S00-000.* PRINTS A LINECALL 'PRINT' USING P-PRINTLINE.S00-999.EXIT.S10-HOLIDAY-CHECK SECTION.* CHECK FOR PAYMENT HOLIDAYIF APS-HOL-MONTH = DL-MONTHMOVE 'Y' TO OUT-PAYMENT-HOLMOVE ZEROES TO OUT-OUTSTANDING.S10-999.EXIT.Figure 8: Cobol Mortgage Payment Cal
ulation Program11




