
Code Extra
tion Algorithms whi
h Unify Sli
ing and Con
eptAssignmentMark Harman1 Ni
olas Gold2 Rob Hierons1 Dave Binkley31Brunel University 2UMIST 3Loyola CollegeUxbridge, Middlesex Man
hester BaltimoreUB8 3PH, UK. M60 1QD, UK. MD 21210-2699, USA.Keywords: sli
ing,
on
ept assignment, sour
e
ode extra
tionAbstra
tOne approa
h to reverse engineering is to par-tially automate sub
omponent extra
tion, improve-ment and subsequent re
ombination. Two previouslyproposed automated te
hniques for supporting thisa
tivity are sli
ing and
on
ept assignment. How-ever, neither is dire
tly appli
able in isolation; sli
ing
riteria (sets of program variables) are simply too lowlevel in many
ases, while
on
ept assignment typi-
ally fails to produ
e exe
utable sub
omponents.This paper introdu
es a uni�
ation of sli
ing and
on
ept assignment whi
h exploits their
ombined ad-vantages, while over
oming their individual weak-nesses. Our `
on
ept sli
es' are extra
ted usinghigh level
riteria, while produ
ing exe
utable sub-programs. The paper introdu
es three ways of
om-bining sli
ing and
on
ept assignment and algorithmsfor ea
h. The appli
ation of the
on
ept sli
ing al-gorithms is illustrated with a
ase study from a large�nan
ial organisation.1 Introdu
tionFor program
omprehension and reverse engineer-ing it is important to have automated te
hniquesfor extra
ting exe
utable sub
omponents a

ordingto high level extra
tion
riteria. These
omponentsneed to be semanti
ally related to the original (sothat they
an be exe
uted in isolation), while the
riteria for sele
tion may need to identify disparatese
tions of diverse
ode whi
h will have to be mar-ried together. Therefore, the problem is to be able toautomati
ally produ
e programs whi
h answer ques-tions of the form: Given an original program,
on-stru
t the simplest program that, for example per-forms the same master �le update operation or whi
h
loses down the rea
tor under the same
onditions.Program sli
ing and
on
ept assignment are auto-mated sour
e
ode extra
tion te
hniques that take a

riterion and program sour
e
ode as input and yieldparts of the program's sour
e
ode as output. There-fore, they suggest themselves as natural
andidatesolutions to this problem. Sli
ing has the advantagethat the extra
ted
ode it produ
es
an be exe
utedas a program in its own right, but the disadvantagethat the
riterion must be expressed at the low levelof program variables. Con
ept assignment has theadvantage that the extra
tion
riterion is expressedat just the right level (in terms of
on
epts su
h as`master �le', `error re
overy' and `log update'), butthe disadvantage that the
ode fragments it extra
ts
annot be
ompiled and exe
uted as a separate pro-gram. Thus, ea
h te
hnique over
omes the diÆ
ultyasso
iated with the other.This paper shows how sli
ing and
on
ept assign-ment
an be
ombined to produ
e better results thaneither is
apable of individually. The
ontributionsof this paper
an be summarised as follows.� A framework for
ombining Sli
ing and Con
eptAssignment is introdu
ed� Algorithms are introdu
ed for{ Exe
utable Con
ept Sli
ing{ Key Statement Analysis{ Con
ept Dependen
y Analysis� The appli
ation of the
on
ept sli
ing approa
hto reverse engineering is illustrated with a
asestudyThe rest of the paper is organised as follows. Se
-tion 2 brie
y reviews sli
ing and
on
ept assignmentto make the paper self-
ontained. It
an safely beskipped by a reader familiar with both te
hniques.Se
tion 3 presents a framework for unifying sli
-ing and
on
ept assignment, suggesting three newte
hniques whi
h
ombine sli
ing with
on
ept as-signment. Algorithms for these three te
hniques:1

Mirrored By:

www.siliconinvestigations.com

For more information, call us - 920-955-3693

Exe
utable Con
ept Sli
ing (ECS), Key StatementAnalysis (KSA) and Con
ept Dependen
y Analysis(CDA) are introdu
ed in se
tions 4, 5 and 6 respe
-tively. Se
tion 7 presents a
ase study involving a�nan
ial payment system, whi
h illustrates the useof the
on
ept sli
ing algorithms introdu
ed in se
-tions 4, 5 and 6. Se
tion 8
on
ludes and Se
tion 9gives dire
tions for future work.2 Ba
kgroundThis se
tion provides some ba
kground, de�nitionsand notation for sli
ing and
on
ept assignmentwhi
h are used in the remainder of the paper.2.1 Sli
ingProgram sli
ing [31℄ is de�ned with respe
t to a `sli
-ing
riterion'. Sli
ing uses dependen
e analysis toisolate those parts of a program that potentially af-fe
t the sli
ing
riterion.Traditionally `parts of the program to be isolated'have been restri
ted to statements and predi
atesand the sli
ing
riterion has been de�ned in termsof a set of variables and a point at whi
h their val-ues are of interest. More re
ent work has extendedtraditional sli
ing by
onsidering novel sli
ing
rite-ria involving
onditions and test adequa
y properties[5, 15℄. The te
hniques for isolation of statementshave also broadened from statement deletion to al-low for more general transformation [4, 12, 30℄.This paper will be
on
erned solely with syntax-preserving stati
 sli
ing, whi
h will be used both tore�ne and to extend the results of
on
ept assign-ment. In all
ases, sli
es will be
onstru
ted for a setof nodes of a program's Control Flow Graph (CFG).This means that the sli
ing
riterion will simply bea set of n statements fs1; : : : ; sng.De�nition 1 (Sli
e)A sli
e of a program p for the sli
ing
riterionfs1; : : : ; sng is an exe
utable subprogram, s,
on-stru
ted from p by statement deletion, su
h thats behaves identi
ally to p with respe
t to the se-quen
e of values
omputed at ea
h of the statementsin fs1; : : : ; sng. The sli
e of a program p w.r.t a setof statements S will be denoted Sli
e(p; S).This de�nition of a sli
e is essentially the exe-
utable version of the de�nition adopted by the Sys-tem Dependen
e Graph approa
h of Horwitz et al.[16℄. Typi
ally, work on the System Dependen
eGraph (SDG) de�nes it to
ontain a set of `�nal use'verti
es for ea
h variable. The SDG is so-
onstru
tedto guarantee the existen
e of su
h a vertex for ea
hvariable. This allows sli
es to be
onstru
ted for avariable in terms of its �nal use vertex.

De�nition 2 (Final Use Vertex)FinalUse(p; v) is the �nal use vertex of variable v inprogram p.The dependen
e graph itself
an be useful inanalysing the distan
e between a sli
e node and someother node in the sli
e.De�nition 3 (SDG Distan
e)Given statements s and s0 of a program p, the dis-tan
e, Dist(p; s; s0) is the length of the shortest pathbetween s and s0 in the SDG of p. If there is no pathfrom s and s0 in the SDG of p, then Dist(p; s; s0) isunde�ned.2.2 Con
ept AssignmentThe
on
ept assignment1 problem is de�ned as \apro
ess of re
ognising
on
epts within a
omputerprogram and building up an `understanding' of theprogram by relating re
ognised
on
epts to portionsof the program, its operational
ontext and to one an-other [3℄." It
an be undertaken by intelligent agents(tools), with three distin
t approa
hes being adopted[3℄:1. Highly domain spe
i�
, model driven, rule-based question answering systems that dependon a manually populated database des
ribingthe software system. This approa
h is typi�edby the Lassie system [7℄.2. Plan driven, algorithmi
 program understandersor re
ognisers. Two examples of this typeare the Programmer's Apprenti
e [28℄, andGRASPR [32℄.3. Model driven, plausible reasoning systems. Ex-amples of this type in
lude DM-TAO [3℄, IRENE[17℄, and HB-CA [9, 10℄.Biggersta� et al.
laim that systems using ap-proa
hes 1 and 2 are good at
ompletely deriv-ing
on
epts within small-s
ale programs but
annotdeal with large-s
ale programs due to overwhelming
omputational growth. Approa
h 3 systems
an eas-ily handle large-s
ale programs sin
e their
ompu-tational growth appears to be linear in the lengthof the program under analysis but they su�er fromapproximate and impre
ise results [3℄.We are
on
erned with plausible reasoning systems(
ategory 3 above) and all referen
es to
on
ept as-signment in this paper should be taken as referringto this kind of system. Plausible reasoning systemsare of parti
ular interest be
ause they are s
alable1Note:
on
ept assignment is a wholly di�erent te
hnologyfrom formal
on
ept analysis (FCA) (sometimes just
alled`
on
ept analysis').2

and are theoreti
ally
apable of assigning higher-level
on
epts than some of the other approa
hes.The assignment is based on the eviden
e available inthe
ode being analysed from whi
h a `best guess' istaken; reasoning is thus based on plausibility ratherthan dedu
tion. In addition to the
ommon appli
a-tion of
on
ept assignment in helping maintainers to
omprehend programs, Cimitile et al. [6℄ have sug-gested it as a way of validating the adequa
y of a
andidate
riterion when identifying suitable mod-ules for reuse.Hypothesis-Based Con
ept Assignment (HB-CA)[9, 11℄ is one of the most re
ent examples of aplausible-reasoning
on
ept assignment approa
h. Itdeals with the part of the
on
ept assignment prob-lem that involves relating re
ognised
on
epts to por-tions of a program. HB-CA uses a simple knowledgebase to en
ode the relationships between
on
eptsand potential eviden
e for them in sour
e
ode. It isthis approa
h that we propose to
ombine with pro-gram sli
ing. The following de�nition introdu
es thenotation we will use to denote
on
ept assignment.De�nition 4 (Con
ept)A
on
ept
, named n, of a program p is
onstru
tedwith respe
t to a domain model D. The
on
ept
on-sists of a tagged
ontiguous sequen
e of
ode from p,for whi
h there is eviden
e (a

ording to D) that thesequen
e implements the
on
ept named n. For a
on
ept
, Tag(
) refers to the name of the
on
ept
, while Statements(
) refers to its statements. Fora program p and domain model D, Con
epts(p;D)refers to the set of all
on
epts assigned to p a

ord-ing to D.Figure 1 shows a fragment of a domain model(whi
h will be used in the
ase study in Se
tion 7). Ina domain model,
on
epts are
lassi�ed into a
tionsand obje
ts and may be
omposed or spe
ialised.Ea
h
on
ept has a number of indi
ators whi
h rep-resent the potential sour
e
ode eviden
e for the
on-
ept. For every pie
e of sour
e
ode eviden
e that isfound, a hypothesis is generated for the appropriate
on
ept. Segments (
ontiguous groups of hypothe-ses de�ning a
ontiguous region of sour
e
ode) areformed from the resulting list of hypotheses using
on
eptual density and program syntax to de�ne theboundaries. The dominant
on
ept (i.e. the one forwhi
h there is most eviden
e) in ea
h segment is as-signed to the appropriate region of sour
e
ode.3 A Framework for Unifying Sli
-ing and Con
ept AssignmentThis se
tion presents a framework of notation andrequirements for developing a
ombined sli
ing and

on
epts approa
h. The term `
on
ept sli
e' will beused to refer to the result of any
ombination of sli
-ing and
on
ept assignment. Figure 2 depi
ts, inoverview, the three types of
on
ept sli
e
onsideredin this paper.3.1 Exe
utable Con
ept Sli
ing (ECS)Exe
utable Con
ept Sli
ing (ECS) is the basi
 start-ing point for the approa
h we advo
ate. An ECS isformed using sli
ing to augment the results of
on-
ept assignment to make the
on
ept an exe
utablesub-program.More formally, an algorithm for ECS is a fun
tionwhi
h takes a program, p, and a domain model, D,and produ
es a set of exe
utable sub-
omponents,one per
on
ept in the program p a

ording to D.Ea
h returned
on
ept must be exe
utable and, whenexe
uted, the
omputation
aptures the
omputationon the asso
iated
on
ept of p w.r.t. D. In formingan ECS, the set of statements tagged with the
on-
ept name may no longer be
ontiguous.The end of the segment identi�ed in
on
ept as-signment will be treated as an end of program ver-tex. For example, in the
ase of COBOL, this
an bea
hieved by inserting a STOP RUN statement at theend of the segment of
ode assigned to the
on
ept.The ECS will be further re�ned using key state-ment analysis, as des
ribed in the next se
tion.3.2 Key Statement Analysis (KSA)Given a
on
ept (and/or
on
ept sli
e), some state-ments will be more important than others; they will
ontribute more to the
omputation embodied bythe
on
ept. The more important statements areregarded as the `key' statements of the
on
ept. KeyStatement Analysis (KSA) is an analysis step whi
haims to determine the key statements in a
on
ept.The approa
h
an be applied to both
on
epts andto
on
ept sli
es.More formally, an algorithm for KSA is a fun
tionwhi
h takes a program and a
on
ept assigned withinit, and returns a fun
tion whi
h des
ribes the rela-tive weight of ea
h statement in the
on
ept. Theweight is represented as a fun
tion, form statements,Statement, to real numbers, IR. If the fun
tionreturned is f then f(s), denotes the weight of state-ment sA simple approa
h identi�es a subset of the state-ments as being key. A more elaborate approa
h, as-signs weights to ea
h statement, indi
ating relativekeyness. These weightings will be real numbers inthe range 0 to 1 and so the simple
ase is merely aspe
ial
ase in whi
h the only two out
omes are 0and 1.3

“Mortgage”

Mortgage

Interest

Interest

Calculate

Calculate Interest

“Subtract”

“Interest”

“Outstanding”.

“Calculate” “Divide”

Key

Indicates

Specialisation

Composition

Concept

Indicator

Composite Concept

Figure 1: A Fragment of a Domain Model3.3 Con
ept Dependen
y Analysis (CDA)To perform
on
ept assignment, an initial domainmodel is
reated by the software engineer (basedon their experien
e). This model ought to be im-proved as the method is used. Unfortunately, usingtraditional
on
ept assignment, there is no guidan
eto indi
ate whi
h
on
epts o

ur together frequentlynor to elu
idate the inter-
on
ept relationships whi
hevolve as the analysis pro
ess iterates. Therefore,the model is improved only by serendipity and in apoorly de�ned ad-ho
 manner. A
learly de�ned andtool-assisted feedba
k approa
h is required to sup-port the dis
iplined and systemati
 evolution of themodel, fa
ilitating pro
ess improvement over su

es-sive analyses.More formally, an algorithm for Con
ept Depen-den
y Analysis (CDA) takes a program and a domainmodel and produ
es a
on
ept dependen
e graph.A
on
ept dependen
e graph is a dire
ted graph,in whi
h the nodes are
on
epts and the edges areweighted. Thus, formally, the
on
ept dependen
ygraph is a set of triples, su
h that triple (
;
0; w) isin the graph i� there is an edge from
on
ept
 to
0with weight w. The
on
ept graph is thus a weightedrelation on the set of
on
epts.3.4 Prin
ipal VariablesIn order to form
on
ept sli
es for KSA and CDA itwill be ne
essary to determine the prin
ipal variablesof an arbitrary set of statements. The prin
ipal vari-ables are those whi
h might be
onsidered to be theresult of the set of statements.

As Bieman and Ott point out in their work onsli
e-based
ohesion measurement [18, 25℄, the de
i-sion as to what variables are `prin
ipal' is somewhatarbitrary;
hanging it
an, of
ourse, alter the resultsof the algorithms upon whi
h it is based. Therefore,the de�nition of what
onstitutes a prin
ipal variableshould be treated as a parameter of the
on
ept sli
-ing approa
h advo
ated here. The de�nition belowwill be used as a working de�nition for the
ase studyin Se
tion 7, and is derived from Bieman and Ott.De�nition 5 (Prin
ipal Variable)A variable v in a set of statements S is a prin
ipalvariable i� it is either� global and assigned in S�
all-by-referen
e and assigned in S� the parameter to an output statement of SGiven a set of statements S, PV (S) will be usedto denote the set of prin
ipal variables of S.4 ECS AlgorithmThe ECS algorithm is presented in Figure 3. Thealgorithm is straightforward. The statements of the
on
ept form the set of statements for the sli
ing
riterion. Sli
ing on these statements adds to the
on
ept, all statements of the original program re-quired to ensure that the
on
ept statements faith-fully mimi
 (in the
on
ept sli
e) their behaviour inthe original program.4

Name Purpose Type Potential Appli
ationsExe
utable Con
ept Sli
-ing (ECS) To form an exe
utablesub-
omponent Inter-Con
ept Analysis Reuse and re-engineeringKey Statement Analysis(KSA) To re�ne a
on
ept Intra-Con
ept Analysis Comprehension and re-verse engineeringCon
ept Dependen
yAnalysis (CDA) To identify inter-
on
eptrelationships Inter-Con
ept Analysis Domain modelimprovementFigure 2: Overview of the Con
ept Sli
ing Frameworkfun
tion ECS(Program p, DomainModel D)returns: set of Programlet f
1; : : : ;
ng = Con
epts(p;D)for ea
h
i 2 f
1; : : : ;
nglet ECSi = Sli
e(p; Statements(
i))let Tag(ECSi) = Tag(
i)endforreturn fECS1; : : : ; ECSngFigure 3: The Exe
utable Con
ept Sli
ing Algorithm5 KSA AlgorithmA simple KSA algorithm is presented in Figure 4.The fun
tion KSABO takes a program and a
on-
ept assigned within it and returns a fun
tion whi
hdes
ribes the relative weight of ea
h statement in the
on
ept. In this
ase, the returned result is either 0or 1, with 1 signifying that the statement is a keystatement and 0 signifying that it is not.The idea is to use the set of prin
ipal variables inthe
on
ept to form a set of sli
es. The interse
tion ofthese sli
es
ontains the statements whi
h
ontributeto the
omputation of every prin
ipal variable; inother words, the key statements of the
on
ept.We
all this the `BiemanOtt-style' algorithm, be-
ause it is inspired by Bieman and Ott's work onmeasuring
ohesion using sli
ing [2, 18, 25, 26, 27℄.Spe
i�
ally, the interse
tion of sli
es on prin
ipalvariables is the set used to
ompute the `Tightness'metri
 introdu
ed by Ott and Thuss [26℄. Tightnesswas later developed into a theory of
ohesion mea-surement based on sli
ing [2, 25℄.An alternative KSA algorithm is presented in Fig-ure 5. In this approa
h, the returned value asso
i-ated with a statement is a real number, rather thansimply a value in f0; 1g. The value assigned to astatement represents the dire
tness of dependen
ebetween it and the prin
ipal variables of the
on-
ept. The weight for statement s is
omputed as thelength of the shortest path from s to a �nal use ver-tex of a prin
ipal variable, normalized with respe
t

fun
tion KSABO(Program p, Con
eptSli
e
)returns: fun
tion from Statement to f0; 1gfor ea
h variable vi in PV (
)let si = Sli
e(p; fFinalUse(Statements(
); vi)g)endforlet Tight = Ti silet KS = Statements(
) \ T ightreturn �x: if x 2 KS then 1 else 0Figure 4: Key Statement Analysis `BiemanOtt' Styleto the length of the longest a
y
li
 path in the pro-gram's SDG2, su
h that statements with KSA values
loser to 1 are more `key' and those with KSA val-ues
loser to 0 are `less key'. This gives a real valueweighting between 0 and 1 for ea
h statement in the
on
ept. The algorithm builds up the fun
tion F tobe returned, adding a maplet for ea
h statement siwhi
h maps si to its weight.Observe that, be
ause Dist(s; s0; p) is unde�ned ifthere is no path from s to s0 in the SDG of p, theweight of a statement is also unde�ned when there isno path from it to the �nal use vertex of any prin
ipalvariable. For any su
h an `un
onne
ted' statement,the unde�nedness of the weight will alert the engi-neering to a possible anomaly; why is su
h a state-ment in a
on
ept if it has no e�e
t on any prin
ipalvariable? We
all this algorithm the `BallEi
k' algo-rithm be
ause it is inspired by Ball and Ei
k's workon the SeeSli
e proje
t[1℄.6 CDA AlgorithmAn algorithm for produ
ing a weighted Con
ept De-penden
y Graph is presented in Figure 6. Weightingswill be allo
ated a

ording to the amount of
ompu-2In the algorithm, the SDG is used, but there may be analy-ses for data-intensive programs, for whi
h it would be edifyingto
onsider the repla
ement of the SDG with the Data Depen-den
e Graph (DDG) and (for
ontrol sensitive
on
epts) touse the Control Dependen
e Graph (CGD).5

fun
tion KSABE(Program p, Con
eptSli
e
)returns: fun
tion from Statement to IRlet F = fglet N be the longest a
y
li
 path in the SDG of pfor ea
h si in Statements(
)for ea
h vj in PV (
)let dij = Dist(p; si; F inalUse(Statements(
); vj))endforlet Di = minj dijlet F = F [fsi 7! N�DiN gendforreturn FFigure 5: Key Statement Analysis `BallEi
k' Styletation (normalized by
on
ept size) whi
h one
on-
ept
ontributes to the
omputation of another. To
ompute this we use an approa
h based on the sli
e-based
oupling metri
 of Harman et al. [14℄. Thisapproa
h is a
oupling metri
, similar to the
ohesionmetri
s of Bieman and Ott [25℄.The metri
 is
omputed using the prin
ipal vari-ables of a
on
ept. The union of sli
es (restri
tedto
on
ept
0) is then formed. This is the part of
0 whi
h
ontributes to the
omputation of the prin-
ipal variables of
. The weight of the edge from
0 to
 is
onsidered to be the relative amount of
0(normalized by the size of
0) whi
h lies in the unionof sli
es. This normalized `amount of
omputation'forms a
rude way of determining the amount of
0whi
h
ontributes to the
omputation denoted by
.The algorithm starts with an empty graph (G) andgoes through ea
h
on
ept (the i loop) adding inweightings from ea
h of the other
on
epts (the jloop) in the graph. For ea
h pair of
on
epts, theunion of sli
es on prin
ipal variables, Comp, is
om-puted and this is used to determine the
ontribution,Cont, that one
on
ept makes to the other. This
on-tribution is reformulated into a metri
 value between0 and 1, by
al
ulating its size relative to the size ofthe whole
ontributing
on
ept.7 A Case StudyThis se
tion presents a
ase study whi
h illustratesthe appli
ation of the four algorithms introdu
ed inthe paper. The program
on
erned (see Figure 8) isbased on one drawn from a large �nan
ial servi
es or-ganisation and, among other things,
al
ulates mort-gage repayments. In the example, we have used alibrary of 25
on
epts and their asso
iated eviden
eto generate
on
ept bindings and segments.Suppose that the mortgage produ
ts of the organi-

fun
tion CDA(Program p, DomainModel D)returns: Con
eptGraphlet G = fgfor ea
h
i 2 Con
epts(p;D)for ea
h
j 2 Con
epts(p;D) (j 6= i)for ea
h variable vk in PV (
j)let sk = Sli
e(p; fFinalUse(
j; vk)g)endforlet Comp = Sk sklet Cont = Comp \ Statements(
i)let M = jContjj
ijlet G = G [f(
i;
j ;M)gendforendforreturn GFigure 6: The Con
ept Dependen
y Analysis Algo-rithmsation are to be overhauled. The lega
y system whi
h
omputes mortgage payments is to be reverse andre-engineered. Spe
i�
ally,
onsider the s
enario inwhi
h an engineer is looking to lo
ate the
ode whi
h
al
ulates mortgage payments to re-use it (possiblyin an amended form) in the re-engineered system.Thus, the reverse engineer is seeking, initially, toretain the
ode for
al
ulating mortgage interest,while dis
arding the remainder of the program. Anatural step would be to identify the
ode whi
himplements mortgage
al
ulations. Unfortunatelypure sli
ing
annot help unless the engineer knowswhi
h variables are important for this
omputation.The engineer may be only partially familiar with the
ode and, therefore, unable to sele
t a suitable vari-able or set of variables. Con
ept assignment
anbe used to produ
e a set of
ontiguous statementsfor whi
h there is eviden
e that the
ode performsa
tions relating to mortgage interest, but the en-gineer
annot simply extra
t and reuse this
ode,sin
e the
ode sequen
e is not an exe
utable sub-program. However, by forming the ECS for theCal
ulate:MortgageInterest
on
ept the reverseengineer
an extra
t the
ode of interest as a exe-
utable sub-program.Sele
ting the `
al
ulate mortgage interest'
on
eptprodu
es the
on
ept highlighted by light shading inthe left-hand
olumn of Figure 8. Figure 1 depi
tsthe fragment of the domain model used to lo
ate this
on
ept. Using the algorithm in Figure 3 the ECSfor
al
ulate mortgage interest additionally identi�esthe boxed lines shown in the �gure. Noti
e that theline of
odeMOVE '010' TO APS-RECORD-IN.6

is not in the ECS, even though it assigns a valueto one of the variables (APS-RECORD-IN) referen
edby the
on
ept. This is be
ause the value assigned isimmediately overwritten by the PERFORM of the
odefor C00-READ-APS.The reverse engineer might also analyse the
on-
ept using Key Statement Analysis. The prin
ipalvariables of the
on
ept are:W-RED-INT-4W-RED-INTUsing the BiemanOtt style KSA algorithm (Fig-ure 4), the interse
tion of sli
es for these twovariables
onsists of the
ode whi
h
omputesW-RED-INT-4, sin
e this
ode is a subset of the
odewhi
h
omputes W-RED-INT. We might think of thisanalysis as revealing a sub-
on
ept (the unroundedresult) within the
al
ulate mortgage
on
ept.Now, suppose instead of applying KSA to the
on-
ept, the reverse engineer, instead,
hooses to applyit to the ECS. The prin
ipal variables of the ECSare: W-RED-INT-4OUT-OUTSTANDINGW-RED-INTAPS-RECORD-INFor these four variables, the interse
tion of the
or-responding sli
es (Tight) is empty, indi
ating that nostatements are key in the ECS a

ording to the Bie-manOtt style algorithm. This information is useful,be
ause it indi
ates that there is no
ode in the ECSwhi
h is germane to all of the
omputation. This sug-gests that there may be more than one
on
ept im-plemented within the boundaries identi�ed by ECS.In this
ase, the ECS happens to
ontain a largepart of the Read:APSRe
ord
on
ept and this shouldprobably be separated out. (The possibility of mul-tiple
on
ept binding is dis
ussed brie
y as an issuefor future work.)At this point, the reverse engineer might
hooseto try KSA with a slightly di�erent set of prin-
ipal variables, based upon the observation thatAPS-RECORD-IN is an obvious `odd one out'; it is
learly an input variable (even though it is bothglobal and assigned and, therefore, a `prin
ipal vari-able' a

ording to De�nition 5). For the remain-ing three variables, the KSA highlights pre
iselythe
omputation on OUT-OUTSTANDING. That is, thekey statements identi�ed are the three boxed state-ments of the se
tion S10-HOLIDAY-CHECK. This sig-ni�es that the
ag APS-HOL-MONTH is
ru
ial. Hav-ing observed this, the reverse engineer might
he
kto see what the
ag APS-HOL-MONTH denotes. A lit-tle (human) analysis will reveal that this feature ofthe system implements `payment holidays'. This is

a produ
t feature aimed at in
reasing take up andmaking the produ
t more attra
tive. It allows the
lient to skip a payment for one month, by extend-ing the period of payments by one month.Of
ourse, in the post-overhaul set of produ
ts,the payment holiday feature may not be in
luded(or it may be in
luded but behave di�erently). Theidenti�
ation of the mortgage holiday
omputationas a set of key statements of the
on
ept alerts thereverse engineer to the importan
e of this
ode indetermining the mortgage payments and identi�esthe se
tion of
ode whi
h needs to be
onsidered.In Se
tion 5 an alternative, and more �ne-grained,KSA algorithm was introdu
ed. This approa
h usesdistan
e (in the SDG) from the �nal use verti
es ofprin
ipal variables to determine a weight for a state-ment, giving a relative measure of keyness. To seehow this works,
onsider the
on
ept for mortgagepayment. The
ode segment for the
on
ept is
utout and depi
ted in Figure 7, along with its CFG andthe
orresponding SDG for the two prin
ipal vari-ables.Dependen
e is tra
ed ba
kward from the �nal useverti
es for the two prin
ipal variables W-RED-INT-4and W-RED-INT. The longest a
y
li
 path in the SDGis 6 nodes long (from the �nal use of W-RED-INT, to 7,6, 2, 5, 4). Nodes 7 and 6 are only a single edge awayfrom a �nal use and so the shortest path is length 2.Therefore both nodes re
eive a KSA value of 46 . Theshortest path from nodes 5, 2 and 1 is 3 nodes longand so they re
eive a KSA value of 36 . Node 4 is next,with a shortest path of length 4 and a KSA value of26 and �nally node 3 has a KSA value of 16 .The values in themselves are largely immaterial;we
an, at best, be measuring on an ordinal s
ale of`dire
tness of dependen
e' [29℄. What is importantis the order they introdu
e on nodes. The most keystatements are those whi
h de�ne the values of in-terest (nodes 6 and 7). The next most key are thosewhi
h dire
tly
ontrol the nodes whi
h de�ne the val-ues of interest and those whi
h feed data dire
tly tothem. As we move further away from the �nal useverti
es, we rea
h statements whi
h have a progres-sively less dire
t impa
t upon the
omputation of the�nal value of the prin
ipal variables. It is this obser-vation whi
h motivates the determination of `relativekeyness' using the `BallEi
k' style approa
h.Finally, suppose that the reverse engineer has ex-tra
ted several
on
epts3. One of the other
on
eptswhi
h is identi�ed is the Write:APSRe
ord
on
eptshown in the darker shading in the top right-hand
olumn of Figure 8.The reverse engineer may be interested in the re-lationship between this
on
ept and the
al
ulate3Applying HB-CA to this example a
tually reveals 10
on-
epts, but there is insuÆ
ient spa
e here to dis
uss them allin detail.7

1 PERFORM S10-HOLIDAY-CHECK.A00-010.* READ APS RECORD2 PERFORM C00-READ-APS.3 IF APS-EOF = END-OF-FILEGO TO A00-090.* CHECK FOR HORIS4 IF APS-HORIS NOT = 'AH'GO TO A00-080.* CHECK FOR MORTGAGE INTEREST5 IF APS-M-INT = ZEROESGO TO A00-080.A00-020.* CALCULATE NEW REDUCED MORTGAGE INTEREST6 COMPUTE W-RED-INT-4 =OUT-OUTSTANDING - (W-TAX-RATE * OUT-OUTSTANDING).7 COMPUTE W-RED-INT ROUNDED = W-RED-INT-4 + 0.STOP RUN.
1

stop

start

2

3

4

5

6

7 W−RED−INT−4
Final Use Final Use

W−RED−INT

4 5

3

21

6

7

Control Dependence

Data DependenceCon
ept for Cal
ulate Mortgage Payment Control Flow Graph (CFG) System Dependen
e Graph (SDG)Figure 7: Exe
utable Con
ept Sli
e for Cal
ulate:MortgageInterestmortgage interest
on
ept. Su
h a relationship isuseful in re�ning the domain model, whi
h
ontainsinter-
on
ept relationships. It also provides a
rudeform of assessment of the impa
t of
hanges to one
on
ept upon another and the level of `feature inter-a
tion' between
on
epts. The prin
ipal variables ofthe `write APS re
ord'
on
ept are:APS-RECORD-OUTCHECKING-SLIPUsing the CDA algorithm of Figure 6, the sli
eon these two variables
ontains only one line of the
al
ulate mortgage interest
on
ept:PERFORM C00-READ-APSIn
omputing the relative weight of the edge fromthe
al
ulate mortgage interest
on
ept to the `writeAPS re
ord'
on
ept, we fa
e the familiar issue ofhow to `
ount' lines of
ode [8, 29℄. We have
hosen toadopt the (relatively) un
ontroversial step of
ount-ing Non Comment Sour
e Lines (NCSL). However,as with the determination of prin
ipal variables, this
hoi
e is a parameter to our approa
h and is adoptedhere merely for illustration. There are nine NCSLsin the
al
ulate mortgage interest
on
ept and so theweight of the edge from the
al
ulate mortgage in-terest
on
ept to the `write APS re
ord'
on
ept is19 .We have already
omputed the sli
e for the prin
i-pal variables of the
al
ulate mortgage interest
on-
ept. The sli
e was used to form the ECS earlier and
onsists of the additional boxed lines in Figure 8.We
an see that three of these boxed lines are in the`write APS re
ord'
on
ept. However, only one ofthem is a NCSL, while there are eight NCSLs in to-tal in the `write APS re
ord'
on
ept. This gives the

weighting of the relationship from the `write APSre
ord'
on
ept to the
al
ulate mortgage interest
on
ept as 18 .In themselves these �gures are relatively meaning-less. However, by
omputing similar weights for allthe
on
epts in the system we obtain a weighted
on-
ept dependen
e graph whi
h
an be used to re�neour understanding of the domain model and
ould,for example, form the input to a
lustering tool su
has Bun
h [19, 21, 23℄.8 Con
lusionThis paper has shown how
on
ept assignment andsli
ing
an be
ombined to perform uni�ed sour
e
ode extra
tion, whi
h extra
ts
ode identi�ed by a
on
ept assignment
riterion.The approa
h has the advantage (over pure
on-
ept assignment) that the
ode extra
ted is exe-
utable, be
ause of the use of sli
ing to augment theresults of
on
ept assignment. It also has the advan-tage over sli
ing that the
riterion for extra
tion isexpressed at a high level in terms of domain spe
i�
and `meaningful'
on
epts su
h as `master �le' and`update re
ord'. By
ontrast, pure sli
ing
an onlyextra
t subprograms based upon low level
riteria |sets of variables.The paper introdu
ed an algorithm for Exe
utableCon
ept Sli
ing (ECS), two algorithms for KeyStatement Analysis (KSA) and an algorithm forCon
ept Dependen
e Analysis (CDA). The appli
a-tion of these algorithms to reverse engineering wasdemonstrated using a
ase study based on a Cobolmortgage
al
ulation program taken from a large �-nan
ial servi
es
ompany.8

9 Future WorkThis paper has introdu
ed novel de�nitions, nota-tion and ideas for unifying
on
ept assignment andsli
ing. It has presented algorithms and illustratedtheir appli
ation, but there remains mu
h work tobe done in order to unlo
k the full potential of theuni�ed approa
h.9.1 Multiple Con
ept BindingCurrently, HB-CA assumes that there is only a single
on
ept represented in any se
tion of
ode. This isunrealisti
, but it makes the problem more tra
table.KSA provides a possible vehi
le to analyse the stru
-ture of a
on
ept to identify potential split points sothat the possible layering of multiple
on
epts withina rejoin of
ode
an be
onsidered.9.2 Extending Con
ept BoundariesThe plausible reasoning approa
h to
on
ept assign-ment has been shown to produ
e good results [9℄,but, by its very nature,
annot be guaranteed to iden-tify the
orre
t
on
ept extent in the
ode. We haveused ba
kward sli
ing to �nd the
ode ne
essary tomake the
on
ept exe
utable. However, if HB-CAhas missed some subsequent statements, whi
h onlyget exe
uted after the identi�ed
ode has been ex-e
uted, then these statements will form neither apart of the
on
ept nor of the exe
utable
on
eptsli
e. This does not mean that the ECS will bewrong; it simply means that it will
apture only asub-
omponent of the
omputation of the
on
ept.To
apture the full
omputation, it may be possibleto augment the results of ba
kward sli
ing with someform of forward sli
ing [16℄.9.3 Con
ept Clustering AnalysisCon
ept Dependen
y Analysis produ
es a weightedgraph of
on
epts, with the aim of identifying inter-
on
ept relationships. However, a question remains:how
an we use the
on
ept dependen
e graph todetermine whi
h
on
epts are related? This prob-lem is very similar to the software modularization or
lustering problem [13, 19, 20℄. A tool like Bun
h[19℄ uses hill-
limbing to sear
h for good
lusteringsof software modules based upon a `�tness' fun
tion.The �tness fun
tion is essentially a metri
 whi
hmeasures
ohesion and
oupling between modules ina
luster. The metri
 has been su

essfully appliedto a number of real-world appli
ations [22, 24℄. In allexisting appli
ations the module dependen
e graphused was not weighted, but the metri
 used does
ater for weighted graphs and so there is no reason

not to use Bun
h to produ
e a
lustering of
on
eptsli
es.10 A
knowledgementsMark Harman and Rob Hierons are supported, inpart, by EPSRC Grants GR/R98938, GR/M58719,GR/M78083 and GR/R43150 and by two develop-ment grants from DaimlerChrysler. Ni
olas Gold issupported by EPSRC Grant GR/R71733 and wouldalso like to gratefully a
knowledge the support of theComputer S
ien
es Corporation.Referen
es[1℄ T. Ball and S. G. Ei
k. Visualizing program sli
es.In A. L. Ambler and T. D. Kimura, editors, Pro
eed-ings of the Symposium on Visual Languages, pages288{295, Los Alamitos, CA, USA, O
t. 1994. IEEEComputer So
iety Press.[2℄ J. M. Bieman and L. M. Ott. Measuring fun
tional
ohesion. IEEE Transa
tions on Software Engineer-ing, 20(8):644{657, Aug. 1994.[3℄ T. J. Biggersta�, B. Mitbander, and D. Webster.The
on
ept assignment problem in program under-standing. In 15th International Conferen
e on Soft-ware Engineering, Baltimore, Maryland, May 1993.IEEE Computer So
iety Press, Los Alamitos, Cali-fornia, USA.[4℄ D. W. Binkley. Computing amorphous programsli
es using dependen
e graphs and a data-
owmodel. In ACM Symposium on Applied Computing,pages 519{525, The Menger, San Antonio, Texas,U.S.A., 1999. ACM Press, New York, NY, USA.[5℄ G. Canfora, A. Cimitile, and M. Munro. RE2: Re-verse engineering and reuse re-engineering. Journalof Software Maintenan
e : Resear
h and Pra
ti
e,6(2):53{72, 1994.[6℄ A. Cimitile, A. R. Fasolino, and P. Maras
ea. Reusereengineering and validation via
on
ept assign-ment. In Pro
eedings of the International Confer-en
e on Software Maintenan
e 1993, pages 216{225.IEEE Computer So
iety Press, Sept. 1993.[7℄ P. Devanbu, R. J. Bra
hman, P. G. Selfridge, andB. W. Ballard. LaSSIE: A knowledge-based softwareinformation system. Communi
ations of the ACM,34(5):35{49, May 1991.[8℄ N. E. Fenton. Software Metri
s: A Rigorous Ap-proa
h. Chapman and Hall, 1990.[9℄ N. E. Gold. Hypothesis-Based Con
ept Assign-ment to Support Software Maintenan
e. PhD The-sis, Department of Computer S
ien
e, University ofDurham, 2000.[10℄ N. E. Gold. Hypothesis-based
on
ept assignmentto support software maintenan
e. In IEEE In-ternational Conferen
e on Software Maintenan
e(ICSM'01), pages 545{548, Floren
e, Italy, Nov.2001. IEEE Computer So
iety Press, Los Alamitos,California, USA.[11℄ N. E. Gold and K. H. Bennett. A
exible methodfor segmentation in
on
ept assignment. In 9th IEEE9

International Workshop on Program Comprehension(IWPC'01), pages 135{144, Toronto, Canada, May2001. IEEE Computer So
iety Press, Los Alamitos,California, USA.[12℄ M. Harman and S. Dani
i
. Amorphous programsli
ing. In 5th IEEE International Workshop onProgram Comprenhesion (IWPC'97), pages 70{79,Dearborn, Mi
higan, USA, May 1997. IEEE Com-puter So
iety Press, Los Alamitos, California, USA.[13℄ M. Harman, R. Hierons, and M. Pro
tor. A newrepresentation and
rossover operator for sear
h-based optimization of software modularization. InW. B. Langdon, E. Cant�u-Paz, K. Mathias, R. Roy,D. Davis, R. Poli, K. Balakrishnan, V. Honavar,G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C.S
hultz, J. F. Miller, E. Burke, and N. Jonoska, edi-tors, GECCO 2002: Pro
eedings of the Geneti
 andEvolutionary Computation Conferen
e, pages 1351{1358, New York, 9-13 July 2002. Morgan KaufmannPublishers.[14℄ M. Harman, M. Okunlawon, B. Sivagurunathan,and S. Dani
i
. Sli
e-based measurement of
ou-pling. In R. Harrison, editor, 19th ICSE, Workshopon Pro
ess Modelling and Empiri
al Studies of Soft-ware Evolution, Boston, Massa
husetts, USA, May1997.[15℄ R. M. Hierons, M. Harman, C. Fox, L. Ouarbya, andM. Daoudi. Conditioned sli
ing supports partitiontesting. Software Testing, Veri�
ation and Reliabil-ity, 12:23{28, Mar. 2002.[16℄ S. Horwitz, T. Reps, and D. W. Binkley. Inter-pro
edural sli
ing using dependen
e graphs. ACMTransa
tions on Programming Languages and Sys-tems, 12(1):26{61, 1990.[17℄ V. Karakostas. Intelligent sear
h and a
quisitionof business knowledge from programs. Journal ofSoftware Maintenan
e: Resear
h and Pra
ti
e, 4:1{17, 1992.[18℄ H. D. Longworth, L. M. Ott, and M. R. Smith. Therelationship between program
omplexity and sli
e
omplexity during debugging tasks. In Pro
eedingsof the Computer Software and Appli
ations Confer-en
e (COMPSAC'86), pages 383{389, 1986.[19℄ S. Man
oridis, B. S. Mit
hell, Y.-F. Chen, and E. R.Gansner. Bun
h: A
lustering tool for the re
ov-ery and maintenan
e of software system stru
tures.In Pro
eedings; IEEE International Conferen
e onSoftware Maintenan
e, pages 50{59. IEEE Com-puter So
iety Press, 1999.[20℄ S. Man
oridis, B. S. Mit
hell, C. Rorres, Y.-F. Chen,and E. R. Gansner. Using automati

lustering toprodu
e high-level system organizations of sour
e
ode. In International Workshop on Program Com-prehension (IWPC'98), pages 45{53, Is
hia, Italy,1998. IEEE Computer So
iety Press, Los Alamitos,California, USA.[21℄ S. Man
oridis, T. S. Souder, B. S. Mit
hell, Y.-F.Chen, and E. R. Gansner. REPortal: A web-basedportal site for reverse engineering. In 8th WorkingConferen
e on Reverse Engineering, pages 221{230,Stuttgart, O
t. 2001. IEEE Computer So
iety Press,Los Alamitos, California, USA.[22℄ B. S. Mit
hell. A Heuristi
 Sear
h Approa
h to Solv-ing the Software Clustering Problem. PhD Thesis,Drexel University, Philadelphia, PA, Jan. 2002.

[23℄ B. S. Mit
hell and S. Man
oridis. REPortal: Aweb-based portal site for reverse engineering. In 8thWorking Conferen
e on Reverse Engineering, pages93{102, Stuttgart, O
t. 2001. IEEE Computer So
i-ety Press, Los Alamitos, California, USA.[24℄ B. S. Mit
hell and S. Man
oridis. Using heuris-ti
 sear
h te
hniques to extra
t design abstra
tionsfrom sour
e
ode. In W. B. Langdon, E. Cant�u-Paz,K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrish-nan, V. Honavar, G. Rudolph, J. Wegener, L. Bull,M. A. Potter, A. C. S
hultz, J. F. Miller, E. Burke,and N. Jonoska, editors, GECCO 2002: Pro
eedingsof the Geneti
 and Evolutionary Computation Con-feren
e, pages 1375{1382, New York, 9-13 July 2002.Morgan Kaufmann Publishers.[25℄ L. M. Ott and J. M. Bieman. Program sli
es as anabstra
tion for
ohesion measurement. In M. Har-man and K. Gallagher, editors, Information andSoftware Te
hnology Spe
ial Issue on Program Sli
-ing, volume 40, pages 681{699. Elsevier, 1998.[26℄ L. M. Ott and J. J. Thuss. The relationship be-tween sli
es and module
ohesion. In Pro
eedings ofthe 11th ACM
onferen
e on Software Engineering,pages 198{204, May 1989.[27℄ L. M. Ott and J. J. Thuss. Sli
e based metri
s forestimating
ohesion. In Pro
eedings of the IEEE-CSInternational Metri
s Symposium, pages 71{81, Bal-timore, Maryland, USA, May 1993. IEEE ComputerSo
iety Press, Los Alamitos, California, USA.[28℄ C. Ri
h and R. C. Waters. The Programmer's Ap-prenti
e. ACM Press (Frontier Series), 1990.[29℄ M. J. Shepperd. Foundations of software measure-ment. Prenti
e Hall, 1995.[30℄ M. Ward. The formal approa
h to sour
e
ode anal-ysis and manipulation. In 1st IEEE InternationalWorkshop on Sour
e Code Analysis and Manipu-lation, pages 185{193, Floren
e, Italy, 2001. IEEEComputer So
iety Press, Los Alamitos, California,USA.[31℄ M. Weiser. Program sli
ing. IEEE Transa
tions onSoftware Engineering, 10(4):352{357, 1984.[32℄ L. M. Wills. Automated Program Re
ognition byGraph Parsing. PhD Thesis, AI Lab, Massa
husettsInstitute of Te
hnology, 1992.

10

... PROCEDURE DIVISION.A00-CONTROL SECTION.* INITIAL PROCESSINGA00-000.PERFORM S10-HOLIDAY-CHECK.MOVE '01' TO DL-INPUT-FORMAT.CALL 'DATEPRES' USING DATE-LINKAGE-PARMS.MOVE DL-OUT-DD-MM-CCYY TO H1-DATE.MOVE SPACES TO CHECKING-SLIP.MOVE '011' TO APS-RECORD-OUT.CALL 'GBAAZ0X' USING APS-RECORD-OUT.CALL 'GBABB0X' USING CHECKING-SLIP.MOVE '010' TO APS-RECORD-IN.A00-010.* READ APS RECORDPERFORM C00-READ-APS.IF APS-EOF = END-OF-FILEGO TO A00-090.* CHECK FOR HORISIF APS-HORIS NOT = 'AH'GO TO A00-080.* CHECK FOR MORTGAGE INTERESTIF APS-M-INT = ZEROESGO TO A00-080.A00-020.* CALCULATE NEW REDUCED MORTGAGE INTERESTCOMPUTE W-RED-INT-4 =OUT-OUTSTANDING - (W-TAX-RATE * OUT-OUTSTANDING).COMPUTE W-RED-INT ROUNDED = W-RED-INT-4 + 0.IF GBAIA110 = 'M'MOVE 12 TO W-FREQMOVE 0.12 TO W-FREQ-P.IF GBAIA110 = 'Q'MOVE 4 TO W-FREQMOVE 0.03 TO W-FREQ-P.COMPUTE W-RED-INT-2 = W-RED-INT / W-FREQ.SUBTRACT 0.0005 FROM W-RED-INT-2.COMPUTE W-RED-INT-3 ROUNDED = W-RED-INT-2 + 0.A00-030.MULTIPLY W-FREQ BY W-RED-INT-3.MOVE W-RED-INT-3 TO GBAOA191.EJECTIF GBAIA190 = SPACESGO TO A00-040.IF GBAIA191 = ZEROESGO TO A00-040.DIVIDE GBAOA191 BY GBAIA191 GIVING W-PERCENTAGE.IF W-PERCENTAGE GREATER THAN 1.03GO TO A00-040.IF W-PERCENTAGE LESS THAN 0.97GO TO A00-040.GO TO A00-070.A00-040.PERFORM C20-PRINT.A00-070.MOVE SPACES TO CHECKING-SLIP.MOVE GBAIA010 TO CS-POLICY.MOVE '2' TO CS-TYPE.MOVE GBAIA019 TO CS-STANDARD (1).MOVE GBAOA019 TO CS-STANDARD (2).CALL 'GBABB0X' USING CHECKING-SLIP.Key:Dark Shaded :Write:APSRe
ord
on
eptLight Shaded : Cal
ulate:MortgageInterest
on
eptBoxed : Extra
ode in ECS for Cal
ulate:MortgageInterest

A00-080.PERFORM C10-WRITE-APS.GO TO A00-010.A00-090.MOVE '3' TO W-GBCM0133-2.* END OF JOB PROCESSINGCALL 'GBCM0133' USING APS-RECORD-INW-GBCM0133-2W-GBCM0133-3.MOVE END-OF-FILE TO APS-RECORD-OUT.CALL 'GBAAZ0X' USING APS-RECORD-OUT.MOVE END-OF-FILE TO CHECKING-SLIP.CALL 'GBABB0X' USING CHECKING-SLIP.A00-999.STOP RUN.EJECTC00-READ-APS SECTION.C00-000.* READ APS MASTER FILECALL 'GBAAY0X' USING APS-RECORD-IN.IF APS-EOF = END-OF-FILEMOVE HIGH-VALUES TO APS-RECORD-IN.C00-999.EXIT.SKIP3C10-WRITE-APS SECTION.* WRITE APS MASTER FILEMOVE '2' TO W-GBCM0133-2.CALL 'GBCM0133'USING APS-RECORD-OUT W-GBCM0133-2.CALL 'GBAAZ0X' USING APS-RECORD-OUT.C10-999.EXIT.SKIP3C20-PRINT SECTION.C20-000.IF A-LINENO LESS THAN 25GO TO C20-010.ADD 1 TO A-PAGENO.MOVE A-PAGENO TO H1-PAGE.MOVE C-1 TO P-CC.MOVE H1-HEADLINE TO P-LL.PERFORM S00-PRINT.MOVE WS-2 TO P-CC.MOVE H1-HEADLINE TO P-LL.PERFORM S00-PRINT.MOVE 0 TO A-LINENO.C20-010.MOVE WS-2 TO P-CC.MOVE GBAIA010 TO P1-KEY.MOVE P1-DATALINE TO P-LL.PERFORM S00-PRINT.MOVE SPACES TO P-LL.ADD 2 TO A-LINENO.C20-999.EXIT.EJECTS00-PRINT SECTION.S00-000.* PRINTS A LINECALL 'PRINT' USING P-PRINTLINE.S00-999.EXIT.S10-HOLIDAY-CHECK SECTION.* CHECK FOR PAYMENT HOLIDAYIF APS-HOL-MONTH = DL-MONTHMOVE 'Y' TO OUT-PAYMENT-HOLMOVE ZEROES TO OUT-OUTSTANDING.S10-999.EXIT.Figure 8: Cobol Mortgage Payment Cal
ulation Program11

