

A New Frequency-Based Side Channel Attack
for Embedded Systems

by

Chin Chi Tiu

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2005

© Chin Chi Tiu, 2005

Mirrored By:

www.siliconinvestigations.com

For more information, call us - 920-955-3693

ii

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or

individuals for the purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this thesis by photocopying or

by other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

iii

Abstract

Mobile devices such as personal digital assistants (PDA’s), cell phones and pagers are

becoming increasingly popular. Services provided by these Internet-enabled devices

include sending emails and shopping online. These mobile devices also contain user’s

confidential personal information such as phonebook and credit card information. As a

result, the security of these wireless embedded systems operating in hostile environments

is becoming more challenging. Although confidential data can be protected using

cryptographic algorithms, there have been increased concerns of the vulnerabilities of

cryptographic algorithms to side channel attacks. Power analysis and EM analysis have

been shown in previous research to be able to break conventional symmetric key

algorithms implemented on smart cards. However, no conclusive experiments have been

reported so far on the security of PDA’s. This thesis investigates the threat of EM

analysis on a PDA running AES encryption in order to better protect these systems from

adversaries in future research.

This thesis presents for the first time conclusive EM analysis results of AES

implementation on a PDA. This thesis is also the first one to propose a frequency-based

side channel attack that is efficient even when traces are misaligned in experiments,

whereas the previously researched DEMA fails in such condition. This thesis makes

progress in side channel attacks and is important for future wireless embedded systems,

which will increasingly demand higher levels of data security measures.

Results from this thesis show that the secret key can be retrieved successfully

using the new frequency-based differential EM analysis. In addition, the proposed first-

order frequency attack is capable of defeating the desynchronization countermeasure that

randomly inserts delays.

iv

Acknowledgements

I would like to thank my supervisor, Professor Cathy Gebotys, for all her advice,

guidance and encouragement. I would also like to my family and friends for their love

and support.

I greatly appreciate the generous financial support provided by Professor Gebotys

through a Research Assistantship. I am also grateful for the scholarship awarded to me

by the University of Waterloo.

v

Table of Contents

Abstract .. iii

Acknowledgements.. iv

Table of Contents.. v

List of Figures .. viii

List of Tables .. x

1 Introduction... 1

1.1 Motivation... 1

1.2 Problem Description ... 2

1.3 Thesis Overview ... 3

2 Background Information and Previous Research ... 4

2.1 Introduction to Symmetric Key Algorithms ... 4

2.2 Introduction to Side Channel Attacks ... 5

2.2.1 Information Leakages ... 5

2.2.2 Power Analysis and Electromagnetic Analysis .. 6

2.3 Previous Research on Attacks on Embedded Systems 8

2.3.1 Previous Research on SPA and DPA.. 8

2.3.2 Previous Research on SEMA and DEMA .. 9

2.3.3 Previous Research on Side Channel Attack Countermeasures 11

2.3.4 Previous Research on High Order Side Channel Attacks......................... 12

2.3.5 Previous Research on PDA’s .. 13

2.4 Contribution of Thesis .. 13

3 Differential Frequency Analysis ... 15

3.1 Introduction... 15

3.2 EM and Power Side Channels... 16

3.3 Methodology ... 16

3.3.1 Pre-Processing Stage... 17

3.3.2 Trace Partitioning.. 17

3.3.3 Computing Differential Power Spectral Density Signal 18

vi

3.3.4 Key Guess ... 21

3.4 Theory ... 22

3.4.1 Assumptions.. 22

3.4.2 Temporal Misalignment of Traces in Experimental Results 22

3.4.3 Eliminating Trace Misalignment Using Power Spectral Density 29

3.4.4 Runtime Analysis.. 32

3.5 Other Previously Researched Side Channel Attacks .. 33

3.5.1 Differential Time Analysis (DPA & DEMA)... 33

3.5.2 Differential Spectrogram Analysis (DSA).. 34

3.5.3 Waddle’s Second Order Differential Attack (FFT-2DPA)....................... 35

4 Experiments .. 36

4.1 Experimental Setup for ARM Integrator/C7TDMI core module 36

4.1.1 ARM Integrator/CM7TDMI core module .. 37

4.1.2 Trigger Setup .. 38

4.1.3 Digital Phosphor Oscilloscope.. 38

4.1.4 EM Probe .. 41

4.1.5 Inductive Probe ... 41

4.1.6 Experimental Methodology .. 42

4.2 Experimental Results for Attacks on ARM Evaluation Board 43

4.2.1 EM Analysis on AES .. 44

4.2.2 EM Analysis on a Single Load Instruction ... 48

4.2.3 EM Analysis on AES with Countermeasure... 50

4.2.4 Power Analysis on AES.. 52

4.2.5 Power Analysis on AES with Countermeasure .. 56

4.3 Experimental Setup for PDA .. 58

4.3.1 PDA... 58

4.3.2 Trigger Setup .. 58

4.3.3 Digital Phosphor Oscilloscope.. 59

4.3.4 EM Probe .. 60

4.3.5 Experimental Methodology .. 60

4.4 Experimental Results for Attacks on PDA ... 61

vii

4.4.1 EM Analysis on AES .. 61

4.4.2 EM Analysis on AES with Countermeasure... 69

4.5 Summary of Experimental Results ... 72

5 Discussion ... 74

5.1 Comparison of Experimental Results to Previous Research............................. 74

5.1.1 Comparison to Previous Research on SPA and DPA 74

5.1.2 Comparison to Previous Research on SEMA and DEMA........................ 74

5.1.3 New Findings of Thesis .. 76

5.1.4 Comparison to Previous Research on High Order Attacks....................... 77

5.1.5 Comparison to Previous Research on Frequency Analysis 78

5.2 Advantages.. 78

5.3 Disadvantages ... 79

5.4 Limitations .. 80

5.5 Future Work .. 81

6 Conclusion .. 82

References... 84

Appendix... 87

Appendix 1 – MATLAB program of DFA attack .. 87

Appendix 2 – Java program of AES encryption algorithm on PDA................................. 90

viii

List of Figures

Figure 1: AES Encryption... 5

Figure 2: Differential Power Analysis (DPA) Overview.. 7

Figure 3: Differential Frequency Analysis (DFA) Overview... 17

Figure 4: Trace Partitioning in 1st Round of AES Encryption.. 18

Figure 5: Comparing Differential PSD Signal with 2*STD_R .. 19

Figure 6: Java Program Execution.. 24

Figure 7: Two Perfectly Aligned EM Traces (a & b), Trace 1 Minus Trace 2 (c) 26

Figure 8: Differential Time Signal of Perfectly Aligned EM Traces 27

Figure 9: Two Misaligned EM Traces (a & b), Trace 1 Minus Trace 2 (c)...................... 28

Figure 10: Differential Time Signal of Misaligned EM Traces.. 29

Figure 11: PSD of Misaligned & Aligned EM Traces (a&b), Trace 1 Minus Trace 2 (c) 31

Figure 12: Power and EM Measurement Setup on ARM Integrator/C7TDMI. 36

Figure 13: System Architecture of the ARM Integrator/CM7TDMI Core Module. 37

Figure 14: DEMA on ARM (correct key=0xD2) ... 45

Figure 15: DEMA on ARM for (wrong key=0xA5)... 45

Figure 16: All Keys Search of DEMA on ARM... 45

Figure 17: DEMFA on ARM (correct key=0xD2) ... 47

Figure 18: DEMFA on ARM (wrong key=0xA5) .. 47

Figure 19: All Keys Search of DEMFA on ARM .. 47

Figure 20: All Keys Search of DEMFA on ARM excluding the “Load” Instruction....... 48

Figure 21: All Keys Search of DEMFA on ARM for the “Load” Instruction.................. 49

Figure 22: All Keys Search of DEMA on ARM for AES with Countermeasure 51

Figure 23: All Keys Search of DEMFA on ARM for AES with Countermeasure........... 51

Figure 24: DPA on ARM (correct key=0xD2) ... 53

Figure 25: DPA on ARM (wrong key=0xA5) .. 53

Figure 26: All Keys Search of DPA on ARM .. 53

Figure 27: DPFA on ARM (correct key=0xD2) ... 55

Figure 28: DPFA on ARM (wrong key=0xA5).. 55

ix

Figure 29: All Keys Search of DPFA on ARM .. 55

Figure 30: All Keys Search of DPA on ARM for AES with Countermeasure................. 56

Figure 31: All Keys Search of DPFA on ARM for AES with Countermeasure............... 57

Figure 32: EM Measurement Setup on PDA .. 58

Figure 33: SEMA on PDA for AES 192-bit ... 62

Figure 34: DEMA on PDA (correct key=0x5C)... 63

Figure 35: DEMA on PDA (wrong key=0xE6).. 63

Figure 36: All Keys Search of DEMA on PDA.. 64

Figure 37: DEMFA on PDA (correct key=0x5C)... 65

Figure 38: DEMFA on PDA (wrong key=0xE6).. 65

Figure 39: All Keys Search of DEMFA on PDA ... 66

Figure 40: All Keys Search of DEMFA on PDA (Attacking Last S-Box)....................... 66

Figure 41: DEMSA on PDA (correct key=0x5C)... 68

Figure 42: DEMSA on PDA (wrong key=0x37) .. 68

Figure 43: All Keys Search of DEMSA on PDA ... 68

Figure 44: All Keys Search of DEMFA on PDA for AES with Countermeasure............ 69

Figure 45: All Keys Search of DEMSA on PDA for AES with Countermeasure............ 70

Figure 46: All Keys Search of FFT2DEMA on PDA for AES with Countermeasure 71

x

List of Tables

Table 1: Summary of Oscilloscope Setup for Experiments on ARM............................... 40

Table 2: Summary of Oscilloscope Setup for Experiments on PDA................................ 59

Table 3: Summary of Experimental Results on ARM .. 72

Table 4: Summary of Experimental Results on PDA ... 72

Table 5: Comparison of Signal-to-Noise Ratio for All Measurements 73

Chapter 1 – Introduction

1

1 Introduction

Mobile devices such as personal digital assistants (PDA’s), cell phones and pagers are

becoming increasingly popular. Being Internet-enabled, these devices allow mobile users

to send emails and even shop online. Confidential data are being exchanged wirelessly

under hostile environments. As a result, the data security of wireless embedded systems is

becoming more challenging. Although confidential data can be protected using

cryptographic algorithms, there have been increased concerns of the vulnerabilities of

cryptographic algorithms to side channel attacks.

 Power analysis first introduced by Kocher et al. [1] is one of the powerful side

channel attacks that exploit information leaked from a cryptographic device. Another

powerful side channel attack is electromagnetic analysis. Power analysis and EM analysis

have been shown to be able to break conventional symmetric key algorithms

implemented on smart cards. However, there is a lack of research in the security of

PDA’s. This thesis aims to explore the feasibility of extracting the secret key of

conventional symmetric key algorithms by analyzing EM signals from PDA’s.

1.1 Motivation

Side channel attacks are very powerful cryptanalysis techniques because they break a

cryptosystem at the implementation level. Hence, they require less computational power

comparing to conventional cryptanalysis which defeats a cryptosystem at the algorithmic

level. Side channel attacks allow adversaries to pull extremely small signals from noisy

data, often without even knowing the design of the target system. As a result, these

attacks are of particular concern for mobile devices that must protect secret keys while

operating in hostile environments. However, research in the past focuses mainly on smart

cards’ security. There is a lack of conclusive experiments in the subject of the security of

PDA’s. Comparing to smart card, a PDA has a much more complex architecture. Its

processor operates at a higher clock frequency. With a more complex operating system,

some processes are executed in a parallel fashion. It also consists of other components

such as LCD screen, radio antenna and receiver, infrared port, non-volatile memory, etc.

Chapter 1 – Introduction

2

These components are closely located on the PDA. As a result, performing side channel

attacks on PDA’s is a more difficult problem, since there could be interference caused by

these neighboring components when measuring EM radiation from the processor. The

motivation of this thesis is to examine the threat of side channel attacks on PDA’s

running symmetric key algorithms in order to better protect these systems from

adversaries in future research.

1.2 Problem Description

In this thesis, problems of performing side channel attack to extract the secret key of

symmetric key algorithms implemented on wireless embedded systems are addressed.

The first problem being addressed is the lack of conclusive experiments on the security of

AES implementation on PDA’s. This thesis presents results of power analysis and EM

analysis on an ARM Integrator/C7TDMI core module and a PDA running the Rijndael

encryption algorithm [2].

The second problem being addressed is the lack of methodologies to overcome

experimental issues. There are lots of problems encountered in experiments such as

environmental noise, equipment noise, etc. Among all the experimental issues,

misalignment of traces is the most severe problem encountered while measuring EM

signals from a PDA. If spikes are slightly out of alignment in time, they will cancel out

rather than reinforced when averaging. Misaligned traces could cause large spurious

peaks in a differential trace causing the previously researched DEMA to fail. This thesis

addresses this severe issue by proposing a new side channel attack technique called the

Differential Frequency Analysis (DFA), which does not require perfect alignment of EM

traces, thus supporting attacks on complex wireless embedded systems.

The third problem being addressed is the difficulty of measuring power

consumption from real embedded devices. Measuring the power drained by a processor

requires tampering the device. Due to the lack of public information about the PDA under

test, it is difficult to locate and access the power pins on the complex motherboard of the

device to measure the power consumption of the processor. Therefore, EM analysis is the

Chapter 1 – Introduction

3

preferred attack for the PDA since it is a non-invasive attack as it consists in measuring

the near field without any modification to the PDA. This thesis solves this problem by

alternatively analyzing EM radiation from the PDA to determine whether it leaks any

sensitive information.

The last problem being addressed in this thesis is to examine whether some of the

existing countermeasures for first order differential analysis are effective against the

proposed frequency-based attack and a previously researched attack called FFT 2DPA

proposed by Waddle et al. [13]. The desynchronization countermeasure [21] and the Split

Mask countermeasure [9] are implemented for the Rijndael algorithm.

1.3 Thesis Overview

The first chapter of the thesis consists of a brief introduction, the motivation of the thesis,

and the problem description. The second chapter provides some background information

and presents some previous research on the subjects of power analysis, EM analysis, and

Rijndael algorithm. Also, it summarizes the contribution of this thesis based on what is

missing in previous research. Chapter 3 introduces the new side channel attack technique

called the Differential Frequency Analysis (DFA), which is the first attack that analyzes

signals in the frequency domain. Chapter 4 introduces the experimental setup and

presents the experimental results from both the ARM Integrator/C7TDMI core module

and the PDA. Chapter 5 discusses the experimental results, compares the DFA attack

with previously researched side channel attacks, discusses the effectiveness of the DFA

attack, and presents work to be done in the future. Chapter 6 concludes with the findings

of this thesis.

Chapter 2 – Background Information and Previous Research

4

2 Background Information and Previous Research

This chapter first provides background information on symmetric key cryptography and

side channel attacks followed by previous research on the Rijndael algorithm, power

analysis, and EM analysis. The chapter is concluded by outlining the contribution of this

thesis to the field of side channel attacks.

2.1 Introduction to Symmetric Key Algorithms

Since 1977, the Data Encryption Standard (DES) [24] has been the most widely used

symmetric key algorithm. Due to the fast development and increasing computation power

of computers, DES was broken using a brute force attack in 1997. It is not secure

anymore nowadays. Therefore, the National Institute of Standards and Technology (NIST)

of the United States initiated the development of Advanced Encryption Standard (AES)

[2], also known as Rijndael, to replace DES. This new encryption standard proposed by 2

Belgian researchers, Vincent Rijmen and Joan Daemen, has improved security over DES

and fast computation performance. It is widely implemented on mobile devices. Hence,

this thesis focuses primarily on the security of the Rijndael algorithm implemented on

wireless devices.

Advanced Encryption Standard (AES) is a symmetric block cipher that can

process data blocks of 128 bits, using cipher keys with lengths of 128, 192, and 256 bits.

The basic unit for processing in AES is a byte. The algorithm’s operations are performed

on a two-dimensional array of bytes called the State. The State consists of four rows of

32-bit word. The number of rounds to be performed during the execution of AES is

dependent of the key size. The number of rounds is 10, 12, and 14 for key sizes of 128,

192, and 256 bits of key length respectively. Each round is composed of four different

byte-oriented transformations: byte substitution using a substitution table (S-Box),

shifting rows of the State array by different offsets, mixing the data within each column

of the State array, and adding a Round Key to the State. Figure 1 below illustrates one

complete AES encryption. The transformations within rectangular box are repeated

Chapter 2 – Background Information and Previous Research

5

according to the number of rounds, i.e. the cipher key size. For more details of the

algorithm, see [2].

Figure 1: AES Encryption

Gladman suggest that Rijndael can be implemented very efficiently on processors

with 32-bit words using tables [20]. In his implementation, the SubByte, ShiftRow,

MixColumn and AddRoundKey are combined as only 1 single transformation. Five

tables each of 256 32-bit words are defined to replace the original AES 8-bit S-Box. For

details about how the four different byte-oriented transformations are combined as only 1

single transformation, refer to [20]. All AES test programs in this thesis are written with

the optimized software implementation by Gladman.

2.2 Introduction to Side Channel Attacks

2.2.1 Information Leakages

Secret information about cryptographic devices can be revealed from analyzing power

consumption and EM emanation of these devices. Most modern cryptographic devices

are implemented using semiconductor logic gates, which are constructed out of

transistors. Electrons flow across the silicon substrate when charge is applied to or

removed from a transistor’s gate, and therefore, consuming power. According to

ShiftRow

MixColumn

Ciphertext

Round
Key 1

SubByte

Plaintext

Round
Key i

Chapter 2 – Background Information and Previous Research

6

Messerges’ assumption [4], the processor will leak information about the Hamming

weight of the data being processed. Processing data with higher Hamming weight will

consume more power than processing data with lower Hamming weight and that this

relationship is roughly linear. To measure a circuit’s power consumption, a small resistor

is inserted in series with the power or the ground input. The voltage difference across the

resistor divided by the resistance yields the current. Therefore, the power consumption

can be determined [1].

Similarly, EM emanations arise as a consequence of current flows. In CMOS

devices, current only flows when there is a change in the logic state of a device. As a

result, EM emanations can track number of bit transitions, revealing the Hamming weight

of data being manipulated [5].

2.2.2 Power Analysis and Electromagnetic Analysis

Simple Power Analysis (SPA), Differential Power Analysis (DPA), Simple

Electromagnetic Analysis (SEMA), and Differential Electromagnetic Analysis (DEMA)

are side channel attacks that enable extraction of a secret key stored in cryptographic

devices. The attacker monitors the power consumption or the EM emanation from such

cryptographic devices, and then analyzes the collected data to extract the key. These side

channel attacks aim at vulnerabilities of implementations rather than algorithms which

make them so powerful since adversaries are not required to know the design of the target

system.

Simple power analysis (SPA) [1] is a technique that involves directly interpreting

power consumption measurements collected during cryptographic operations. No

statistical analysis is required in such attack. SPA can yield information about a device’s

operation as well as key material. It can be used to break cryptographic implementations

in which the execution path depends on the data being processed.

Similarly, in a SEMA attack [3], an adversary is able to extract compromising

information from a single EM sample. If a computation makes use of conditional

Chapter 2 – Background Information and Previous Research

7

branches based on secret information, then on a compromising EM signal, this can be

observed as relative shifts in the distances between major computational structures. In

some cases, these shifts may be sufficient to reveal the branch taken, which in turn

confirms the value of the secret information. This is analogous to what has already been

demonstrated for simple power analysis. Thus, conditional statements in the code could

provide valuable opportunities for both SPA and SEMA.

In a differential power analysis (DPA) attack [1], the adversary monitors the

power consumed by the cryptographic devices, and then statistically analyzes the

collected data to extract the key in contrary to SPA. In a first order DPA attack, the

attacker monitors power consumption signals and calculate the individual statistical

properties of the signals at each sample time. More specifically, the attacker identifies

some intermediate value in the cryptographic computation that is correlated with the

power consumption and dependent only on the plaintext and some small part of the key.

A collection of power traces are then gathered throughout a series of encryptions of

different plaintexts. Next, the attacker will divide the traces into groups according to the

intermediate value predicted by current guess at the key and the trace’s corresponding

plaintext. If the averaged power trace of each group differs noticeably from the other, it is

likely that the current key guess is correct. Incorrect key guesses should result in all

groups having very similar averaged power traces, since incorrectly predicted

intermediate value will not be correlated with the measured power traces. Figure 2

demonstrates steps involved in a DPA attack.

Trace Partitioning
(according to key, plaintext

and intermediate value)

Compute
Differential Time

Signal
Key Guess Result

For All Keys

Figure 2: Differential Power Analysis (DPA) Overview

Chapter 2 – Background Information and Previous Research

8

In a higher order DPA attack [1], the attacker calculates joint statistical properties

of the power consumption at multiple sample times. One drawback to high-order DPA is

increased memory and processor requirements because of the need to store multiple

samples for a single DPA computation. Knowledge of the encryption algorithm and

specific implementation is more critical in high-order DPA than first order. In most cases,

the attacker needs to know specific points of execution where joint statistics can be

meaningfully computed.

DEMA is the analogy for DPA [3]. In this attack, instead of monitoring the power

consumption, the attacker monitors the electromagnetic emanations from the

cryptographic devices, and then same statistical analysis as DPA is performed on the

collected EM data to extract secret parameters.

2.3 Previous Research on Attacks on Embedded Systems

This purpose of this section is to present some previous research related to the subjects

discussed in this thesis.

2.3.1 Previous Research on SPA and DPA

Power analysis, including SPA and DPA, was introduced by Kocher at al. in [1]. This

paper describes specific methods for analyzing power consumption measurements to find

secret keys from tamper resistant devices. They had successfully measured the power

consumption of a DES operation on a smart card. Their experimental results showed that

SPA can reveal the sequence of instructions executed. The 16 DES rounds are clearly

visible from a SPA trace that they have captured. In addition, the authors presented

experimental results on DPA of DES implementation. They had successfully extracted

the secret key used in the DES encryption algorithm. Kocher et al. illustrated that DPA

allows adversaries to extract secret information without even knowing the design of the

target system. Goubin et al. later presented a more detailed DPA attack methodology in

[7]. The authors also showed a SPA trace where one can see distinctively 16 rounds of

DES computation. They also published experimental results on DPA of DES on a typical

smart card. However, as one can see, the security of the newly developed encryption

Chapter 2 – Background Information and Previous Research

9

standard, AES, against power analysis is never discussed in both literatures ([1] and [7]).

In [10], Golić described a DPA attack methodology on AES. However, no real power

measurements were presented in his work.

2.3.2 Previous Research on SEMA and DEMA

The past research has been mainly on power analysis. EM analysis also needs to be

understood. Quisquater et al. first discussed EM analysis on smart cards in [5]. They

proposed that a processor can leak information by different ways; not only by power

consumption but also by electromagnetic radiation. The authors developed the

continuation of Kocher’s ideas by measuring the field radiated by the processor. They

proposed that for a non-intrusive attack, EM analysis can be more precise than power

analysis. The authors also suggested that EM analysis is strongly dependent on the

architecture of the chip, and the knowledge of the internal circuitry of the processor

facilitates the work. To measure the EM radiation, they used a simple flat coil so the

variations of the electromagnetic field induce a current at the bounds. The sensor is

placed under the smart card in the very close field. Again, no real experiments of SEMA

or DEMA were put into practice, so no results were presented in their work.

Gandolfi et al. later reported conclusive EM analysis results in [11]. They used

tiny hand-made probes, solenoids made of a coiled copper wire of outer diameters

varying between 150 and 500 microns, for their EM measurements. From their

experimental findings, they had pinpointed that the CPU radiates the most informative

signal, in other words, the CPU is the most data-dependent component. The authors also

stressed the importance to perform measurement as closely as possible to the chip. They

suggested to decapsulate a chip since decapsulation offers 2 important advantages. First

of all, the probe’s coil can be lowered so as to touch the passivation layer and thereby

capture the highest possible field once the chip is bare. Secondly, the chip becomes

optically visible and its specific blocks can be pinpointed more accurately. In this work,

DEMA results of DES from an 8-bit CMOS microcontroller were presented. Note that

they did not perform decapsulation to the chip of the CMOS controller in this particular

experiment. However, they were still able to retrieve the secret key of the DES

Chapter 2 – Background Information and Previous Research

10

encryption algorithm. In addition, Gandolfi et al. compared DEMA results with DPA

results in their paper. According to their experimental findings, although more noisy, EM

measurements yield better differentials than power signals. DEMA’s signal-to-noise ratio

was higher than that of DPA. The correct guess identification was easier, as there were no

false alerts due to erroneous peaks.

Agrawal et al. presented results illustrating various types of EM emanations in [3].

According to them, there are two categories of EM emanations: direct and unintentional

emanations. Direct emanations result from intentional current flows, whereas

unintentional emanations are caused by coupling effects between components in close

proximity. Nonlinear coupling between a carrier signal and a data signal results in the

generation and emanation of an amplitude modulated (AM) signals and also angle

modulated (FM) signals. The authors suggested that exploiting unintentional emanations

can be easier and more effective than trying to work with direct emanations. They also

suggested that AM demodulated signals contain much more information. A useful rule of

thumb is to expect strong carriers at odd harmonics of the clock. According to Agrawal et

al., EM signals propagate via radiation and conduction. All EM emanations are measured

either in the near field or in the far field, both away from the smart card unlike [5] and

[11]. Radiated signals are best captured by placing near field probes or antennas made of

small plate of a highly conducting metal like silver or copper as close as possible or at

least in the “near field” to the device, i.e. no more than a wavelength away. Capturing

conductive EM emanations requires current probes similar to those used for power

analysis and subsequent signal processing to extract them from the stronger signals. They

had discovered that apart from the relatively low frequency, high amplitude power

consumption signal, there are faint higher frequency AM modulated carriers representing

conductive emanations as well. In this work, unlike [5] and [11], they had successfully

demonstrated DEMA attacks of DES on smart cards by AM demodulating the raw EM

signal at different intermediate carrier frequencies (harmonics of the clock frequency).

Most research on side channel attacks so far focus mainly on DES

implementation. Experimental results on DEMA on AES were finally presented by

Chapter 2 – Background Information and Previous Research

11

Carlier et al. in [12]. They also launched the attack on FPGA’s instead of smart cards. No

decapsulation was performed on the FPGA. They used solenoid wires of copper

consisting of a dozen of spires with a diameter of approximately 1 mm for their EM

measurements. They placed the probe as close as possible to the FPGA to increase the

magnetic flux collected by the probe. It is also interesting to note that all bytes are

processed in parallel in FPGA’s. According to the findings of Carlier et al., for a specific

probe position, only specific bits leakage can be detected. So, the bias spike in the DEMA

signal can disappear if they modify the specific bit attacked in their partition function.

This phenomenon can explain why EM analysis is not disturbed by the parallel

computation effect, unlike with power measurements. Their results showed the

effectiveness of EM analysis against AES on FPGA.

As one can see from all previous research discussed so far, the main focus was in

the vulnerability of DES implementation on smart cards, 8-bit processors, and FPGA’s.

Until now, the security of AES implementation on 32-bit processors and PDA’s are never

studied.

2.3.3 Previous Research on Side Channel Attack Countermeasures

Many countermeasures have been proposed in the past to protect symmetric key

algorithms implementation against power analysis and EM analysis attacks. Such

countermeasures fall into 2 categories: signal strength reduction and signal information

reduction. First of all, an example of a signal strength reduction countermeasure can be

the use of shielding [5] to reduce the strength of compromising signals available to an

attacker.

Secondly, examples of signal information reduction countermeasures use mainly

randomization techniques in computation in order to substantially reduce the

effectiveness of statistical attacks using the available signals. Many randomization

techniques have been proposed for securing conventional symmetric key algorithms, such

as DES and AES, against side channel attacks. Daemen et al. proposed the

Desynchronization countermeasure [21] for Rijndael. The main idea behind this

Chapter 2 – Background Information and Previous Research

12

countermeasure is if the sequence of instruction is not fixed but changes from cipher

execution to cipher execution, e.g. by inserting dummy instructions based on some

modifying parameter, the DPA attack no longer works. Chari et al. proposed a Secret

Splitting technique in which data is divided into k shares [6]. A similar Duplication

Method was proposed as a particular case by Goubin and Patarin [7]. Furthermore,

Messerges introduced the Masking Method which involves masking the secret key by

XORing with a random mask [4]. Itoh et al. proposed the Fixed Value Masking Method

[8]. This is an improved countermeasure of Messerges’ Masking Method. With this

method, the encryption process is faster and less RAM size is required. This is achieved

by randomly choosing one mask value from a fixed set of mask values previously

prepared and stored in the ROM. Gebotys et al. presented a low energy masking

countermeasure for symmetric key in [9] which avoids large overheads of table

regeneration or excessive storage unlike [4] and [8]. Although there exist a large number

of protection mechanisms, most of the above countermeasures have never tested against

side channel attacks experimentally.

2.3.4 Previous Research on High Order Side Channel Attacks

Countermeasures that prevent first order attacks may not be effective against higher order

attacks. The effectiveness of high order attacks also needs to be put in practice. In [4],

Messerges first presents a second order attack on the masking countermeasure. He

launched the attack on an ST16 smart card. His findings draw attention to the

powerfulness of higher order DPA. In high order DPA, knowledge of the encryption

algorithm and specific implementation is more critical than first order. The attacker needs

to know specific points of execution where joint statistics can be meaningfully computed.

One drawback to high-order DPA is increased memory and processor requirements

because of the need to store multiple samples for a single DPA computation.

To overcome the increased memory and processor requirements, Waddle et al.

propose a more efficient second-order power analysis in [13]. Two attacks, Zero-Offset

2DPA and FFT 2DPA, are presented in their work. Their work is able to defect the

masking countermeasure while minimizing computation resource requirements in terms

Chapter 2 – Background Information and Previous Research

13

of space and time. There is no need to obtain power measurement at multiple sample

times. Once again, no real measurements are presented by the authors.

2.3.5 Previous Research on PDA’s

Kingpin et al. reported security analysis on PDA’s in [33]. In their work, the threat of

malicious code and virus attack was investigated. The authors provided a summary of the

various types of malicious code: viruses, Trojan horses, and worms. They also detailed

the risks of weak system password storage and backdoor debug modes inherent in Palm

OS. However, attacks presented in [33] are specific to the Palm operating system (OS)

software and hardware platform. PDA’s security against side channel attacks is not

reported in this literature.

2.4 Contribution of Thesis

From all the previous research presented in this chapter, one can see that research in the

past focuses primarily on the security of smart cards’, 8-bit processors, and FPGA’s. No

research has been done to study the threat of side channel attacks on 32-bit processors

and PDA’s. As mobile devices are becoming more and more popular, attacks on these

PDA’s are big concerns and certainly need to be addressed. Furthermore, even though

confidential data on these embedded systems are protected using conventional symmetric

key algorithms, numerous researches have already broken the DES implementation using

both power analysis and EM analysis. Again, most conclusive experimental results

presented so far are attacks on DES implementation. As AES becomes more widely

implemented, its security also needs to be addressed. Therefore, the contribution of this

thesis is to investigate the threat of EM analysis on PDA’s in order to better protect these

systems from adversaries in future research. This thesis presents for the first time EM

analysis results of AES implementation on an ARM Integrator/C7TDMI core module a

PDA both with 32-bit processors.

It is also important to note that experimental issues such as noise and equipment

limitation are never discussed in all previous research. No methodology has been

proposed to overcome these experimental issues. This thesis is also the first one to

Chapter 2 – Background Information and Previous Research

14

address experimental issues encountered in PDA experiments. Since PDA has a more

complex circuitry and operating system than smart cards, there is a problem when

capturing EM traces on the oscilloscope where most EM traces measured are temporally

misaligned. The contribution of this thesis is to address the severe issues of trace

misalignment on PDA experiments. This thesis is the first one to propose a side channel

attack called the Differential Frequency Analysis (DFA), which does not require perfect

alignment of EM traces, thus supporting attacks on real embedded systems. This thesis

also compares the characteristics of EM emanation with power consumption using the

ARM Integrator/C7TDMI core module. The Differential Frequency Analysis (DFA) can

be applied to both power analysis and EM analysis.

As one can see that most countermeasures proposed in the past are rarely applied

to the AES implementation, the effectiveness of these countermeasures needs to be put in

practice. Thus, this thesis implements the desynchronization countermeasure [21] and the

Split Mask countermeasure [9] on the Rijndael algorithm. The effectiveness of these 2

countermeasures against the proposed frequency-based attack (DFA) and a previously

researched high order attack called FFT 2DPA proposed by Waddle et al. [13] is

examined.

Chapter 3 – Differential Frequency Analysis

15

3 Differential Frequency Analysis

The purpose of this chapter is to introduce a new side channel attack on Rijndael

encryption called Differential Frequency Analysis (DFA). This chapter first introduces

why this attack is being pursued. Subsequently, attack methodology and theory are

presented. The last section of this chapter compares the attack methodology of DFA with

previously researched side channel attacks: DEMA, DSA, and FFT 2DPA.

3.1 Introduction

This thesis proposes a new side channel attack called Differential Frequency Analysis

(DFA). This technique is a modified version of Kocher’s differential power analysis [1].

Instead of computing the differential signals in the time domain, this technique is

performed in the frequency domain by calculating the differential power spectral density

(PSD) signal. The reasoning of analyzing signals in the frequency domain is that

sometimes EM or power traces captured are temporally misaligned. As a result,

differential electromagnetic analysis (DEMA) or differential power analysis (DPA) fails.

When spikes are slightly out of alignment in time, they will cancel out rather than

reinforced when averaging. On the other hand, the proposed DFA is efficient in retrieving

the secret key successfully even the problem of trace misalignment is present. In addition,

it is shown experimentally by Agrawal et al. in [3] that the Fast Fourier Transform (FFT)

of EM signals contain useful signal information suggesting the validity of analyzing

signals in the frequency domain. The side channel attack presented in this thesis is

intended to resolve the difficulty of performing first order differential analysis on real

embedded systems where uncorrelated temporal misalignment of traces is a big concern.

Essentially, the Differential Frequency Analysis can be applied on both EM and power

traces. For EM analysis, the attack is called the differential EM frequency analysis

(DEMFA). As for power analysis, the attack is called the differential Power frequency

analysis (DPFA).

Chapter 3 – Differential Frequency Analysis

16

3.2 EM and Power Side Channels

The security of an ARM Integrator/C7TDMI core module and a wireless PDA are

examined in this thesis. Before presenting the DFA attack methodology, this section

discusses the side channels available from these 2 devices under test.

Both power and EM side channels are available from the ARM

Integrator/C7TDMI core module. The power consumption of the ARM processor core is

measured in the form of current in this thesis. Since the amount of voltage drawn on the

ARM processor core is 3.3V, the current consumption can be easily converted to power

consumption by multiplying the current with the supply voltage. It is easy to measure the

power consumption of the ARM core processor since the evaluation board provides a

number of easily accessible test points that can measure the current drawn by the

ARM7TDMI processor core. EM signals can also be obtained from the processor by

simply placing an EM probe on top of the processor for best signal quality.

Comparing to the ARM Integrator/C7TDMI core module, the PDA has a much

more complex architecture. Its processor operates at a higher clock frequency. It also

consists of other components such as LCD screen, radio antenna and receiver, non-

volatile memory, etc. Due to the lack of public information about the PDA under test, it is

difficult to locate the power pins on the complex motherboard of the device to measure

the power consumption of the processor. In addition, measuring the power consumed by

the processor requires modifying the device under test. Therefore, EM analysis is the

preferred attack for the PDA since it does not require any modification to the PDA.

Therefore, only the EM side channel is available from the PDA.

3.3 Methodology

This section introduces the attack methodology of Differential Frequency Analysis

(DFA). Once the power consumption or EM emanation are captured from the device

under test, they are processed and analyzed to extract secret information. To perform

Differential Frequency Analysis (DFA), an attacker first observes n AES encryptions and

capture T1…n[1…m] EM or power traces containing m sample points each. In addition, the

Chapter 3 – Differential Frequency Analysis

17

adversary keeps track of the plaintexts P1…n. No knowledge of the ciphertext is required;

this is a known-plaintext attack. Figure 3 gives an overview of the DFA attack. Unlike

Figure 2, a pre-processing step is needed in this new frequency-based attack.

Pre-Processing
(Compute PSD) Trace Partitioning

Compute
Differential PSD

Signal
Key Guess Result

For All Keys, K={0, …,255)

Figure 3: Differential Frequency Analysis (DFA) Overview

3.3.1 Pre-Processing Stage

The DFA attack requires a pre-processing stage to transform signals from time domain to

frequency domain. In this stage, it involves calculating the power spectral density (PSD)

for all traces. To calculate the power spectral density of a trace, first perform Fast Fourier

Transform (FFT) on the trace T. Then the squared ₤2–norm or the complex conjugate of

the complex number, FFT(T), is computed.

3.3.2 Trace Partitioning

After the pre-processing stage, partition the PSD of traces T1…n[1…m] according to a

selected bit, b, at the output of one of the S-Boxes in the first round of AES encryption.

For each trace, group the trace that has bit b equal to 0 to subset 0 and vice-versa to

subset 1 according to its plaintext and the key guess. The DFA partition function D(P, b,

K) is defined as computing the value of bit 0 ≤ b < 8 of the S-Box output in the first round

of AES encryption for plaintext P, where the 8-bit key entering the S-Box corresponding

to bit b are represented by 0 ≤ K < 28. Figure 4 illustrates how traces are grouped in the

attack.

Chapter 3 – Differential Frequency Analysis

18

Figure 4: Trace Partitioning in 1st Round of AES Encryption

3.3.3 Computing Differential Power Spectral Density Signal

Now, the main component of this new frequency-based differential analysis begins. In

this step, first compute the average of PSD for both subsets. Then, calculate the

differential PSD signal by subtracting the averaged PSD of subset 0 from the averaged

PSD of subset 1. Note that this differential PSD signal is computed in a similar way as

the normal differential time signal found. The only difference is that the frequency

domain signals are used instead of the raw time domain signals. Then for each frequency,

f, of the differential PSD signal, sum up all the spikes that are bigger than 2 times of the

standard deviation threshold signal (2*STD_R).

To quantitatively decide whether the differential PSD signal is significant, it is

important to pick a threshold signal. A good threshold signal would be a constant

multiple k of the standard deviation of means of power spectral density of subset 0 and

subset 1 (STD_R). This threshold signal is served to minimize the impact of false spikes

and to reduce the probability of error. The STD_R is a measure of dispersion of a set of

traces from its mean. If the STD_R is high at some point time, it means that there is

possibly more noise in the traces at this particular time. Therefore, by comparing the

differential PSD signal with 2 times of the STD_R threshold signal, one can evaluate if a

spike in the differential PSD signal is significant while minimizing the impact of false

Key (K)

S-Box in

1st Round

of AES

Encryption

Plaintext (P)

Partition Function D(P,b,K)

Bit b

Subset 0

Subset 1

If Bit b = 0,
trace belongs
to subset 0

If Bit b = 1,
trace belongs
to subset 1

Chapter 3 – Differential Frequency Analysis

19

peaks. Figure 5 below illustrates the total area outside the 2*STD_R region for a correct

and a wrong key guess.

Figure 5: Comparing Differential PSD Signal with 2*STD_R

In Figure 5, the area shaded with lines represents the amount that the differential

signal of a correct key guess exceeds the threshold signal (2*STD_R). And the solid

shaded area represents that for an incorrect key guess. Although both differential signals

have significant peaks, the area of spikes outside the range of 2*STD_R for the correct

key guess is much greater than that of the wrong key. To illustrate how the threshold

signal can minimize the impact of false peaks, let us take a closer look at a false peak

pointed by an arrow in the diagram. It is interesting to note that this peak of the correct

differential signal at point 3 is not significant because it is smaller than the standard

deviation threshold signal. The peak in the threshold signal at point 3 implies that the EM

traces are noisy at this particular point. As a result, by comparing the differential signal

with the STD_R threshold signal, one can minimize the impact of false peaks. The

pseudo-code of the DFA attack methodology is presented next.

Chapter 3 – Differential Frequency Analysis

20

}1
2

,,0{ density, spectralpower in pointsfrequency

}1,,0{ time,
keys 256 allfor *2 outside spikes of vector

encryption AES ofkey

signal) (threshold PSD of means ofdeviation standard _

 traceand set of signal EM
}1,0{ number,set

}1,,0{ number, trace

−∈=

−∈=
=

=

=

=

∈=
−∈=

mff

mtt
STD_RsumPeak

K

RSTD

ibT
bb

nii

b
i

K

K

K

P

FP

)FFT(TF
nii
(T)

ii

ii

return:4

 :3

 :2
:}1,,0{ ,each for :1

ralDensityPowerSpect

2
←

←

−∈ K

1

21

0

20

11

00

11

00

10

_return :5

:4

:3

:2

:1

,STD_DOM

u

STD

u

STD
RSTD

)Size(Pu

)Size(Pu

)STD(PSTD

)STD(PSTD

)P(P

+←

←

←

←

←

sumPeak
R(f)STD))abs(Diff(f sumPeak(K) sumPeak(K)

R(f)STD))abs(Diff(f

mff

y) sumPeak(ke
)Mean(P)Mean(PDiff
)PSTD_DOM(PRSTD

races(P)partitionT,PP
}, , {K K

(T)ralDensityPowerSpectP
T

return :9
)_*2(

)_*2(if :8

:}1
2

,,0{ ,each for :7

0 :6
 :5

,_ :4
}{:3

2550 ,eachfor :2
:1

)(DFA

10

10

10

−+←
>

−∈

←
−←

←

←

∈
←

K

L

Chapter 3 – Differential Frequency Analysis

21

3.3.4 Key Guess

If the key guess K is incorrect, the bit computed using the partition function D will differ

from the target bit for about half of the plaintexts Pi. The partition function is thus

effectively uncorrelated to what was actually computed by the target device. If a random

function is used to divide into 2 subsets, the difference in the averages of the subsets

should be negligible and should be smaller than the range of 2 times of the standard

deviation threshold region.

On the other hand, if the key guess K is correct, the computed value for D will

equal to the actual value of the target bit b with probability 1. The partition function is

thus correlated to the value of the bit manipulated in the first round of AES encryption.

There should be significant differences between the average of PSD for the subset 0 and

subset 1. One would expect to see more spikes outside the range of 2*STD_R.

There are only 28 or 256 possible keys for an 8-bit S-Box in AES. By comparing

the differential PSD signal of all 256 possible keys, the correct key should have the most

significant differential PSD signal among all. The correct key K can thus be identified

since it should have the largest sumPeak(K) value calculated in DFA() among all 256 key

values.

Another advantage of DFA is the possibility of reducing the key search space. For

instance, a brute-force attack is impossible for an AES 128-bit key since there are 2128

possible key searches. On the other hand, the Differential Frequency Analysis is only

performed on each of the 8-bit S-Boxes. For AES 128-bit, there are 16 S-Boxes in total.

Therefore, the key search space is reduced to 16 * 256 = 4096.

Chapter 3 – Differential Frequency Analysis

22

3.4 Theory

This section presents the theory that justifies the proposed Differential Frequency

Analysis attack. The causes and effects of temporal misalignment of traces are also

discussed.

3.4.1 Assumptions

There are a few important assumptions made in the theory of DFA. The first assumption

is that all AES encryption algorithm executes in constant time, regardless of the values of

the plaintexts and the master key. If this is not the case, then the attack would be very

difficult to accomplish. The second assumption is that the attacker has knowledge and

control of the input plaintexts for the Rijndael encryption. The third assumption is that

there is no distortion in the shape of all waveforms in experimental measurements. All

EM traces captured in this thesis are only temporally shifted due to reasons to be

discussed in the following section. The forth assumption is that averaging also helps to

reduce noise from the chip, environment and measurement equipments.

3.4.2 Temporal Misalignment of Traces in Experimental Results

Performing first order differential analysis on real embedded systems is always difficult

where uncorrelated temporal misalignment of traces is a big concern. This section

describes the causes and effects of misalignment of traces in experiments. Note the

misalignment problem is specific to the PDA used in this thesis. Other embedded systems

might suffer from different experimental problems.

3.4.2.1 Causes of Misalignment of Traces in Experiments

The architecture of the device under test can cause various experimental problems. It is

observed that the experiments on the ARM Integrator/C7TDMI core module have

negligible amount of trace misalignment. Averaging a large number of traces could

eliminate such problems. However, the experiments on the PDA suffer seriously from

temporal misalignment of traces where averaging a large number of traces is no longer

effective. The Java architecture, the trigger mechanism for the oscilloscope, and noise are

the three main sources causing temporal misalignment in experiments.

Chapter 3 – Differential Frequency Analysis

23

First of all, there is a restriction that all the programs on the PDA must be written

in Java, a high-level programming language. The final program is not as efficient as that

written in a low-level programming language such as the assembly language used for the

ARM Integrator/C7TDMI core module processor. Since a single low-level language

instruction translates into a single machine-language instruction, whereas a high-level

language instruction typically translates into a series of machine-language instructions.

As a result, Java is much slower than the assembly language.

Java consists of three components: the Java language, the Java Virtual Machine

(JVM), and the Java API (Application Programming Interface). The Java Virtual

Machine can be seen as an abstract computer. It is implemented in software on top of the

hardware platform and operating system. Java programs are compiled for the JVM

instead of the system. Programmer writes a Java program and the Java compiler translates

that into codes that the JVM implements. These codes are called bytecodes. Bytecodes

can be thought of as the machine language for the JVM. The JVM interprets a stream of

bytecodes as a sequence of instructions. These instructions are then executed by the

hardware and OS to generate the desired output [14]. Figure 6 shows the steps involved

in executing a Java program.

Chapter 3 – Differential Frequency Analysis

24

Figure 6: Java Program Execution

As illustrated in Figure 6, it takes several steps to interpret a Java program to

execute and then generate the desired output. Due to the complex and unpredictable

nature of the Java run-time environment, hardware and software interrupts may occur

while the AES encryption test program is running on the PDA. Process switching may

also occur while the encryption test program is running. Therefore, EM emanations due

to these background operations of the PDA would occur at different times in each run of

the Rijndael encryption causing delay when executing a Java program. As a result, a Java

program may be started after an unknown period or after a very long delay causing traces

to misalign in one acquisition. Also, a Java program may be randomly interrupted by

another higher priority process, such as garbage collection, creating unwanted

information in the EM or power traces captured. To remove the distortions created by

garbage collection, all the experiments for this thesis force the PDA to perform garbage

collection before all AES encryption to ensure that garbage collection is not needed

during the computations. This is done by calling the System.gc() function supported by

the java.lang package which the Java Virtual Machine recycles unused objects to free up

memory for quick reuse before running the AES test program.

Java source

Bytecodes

Instructions

Java Program

Java Compiler

Java Virtual
Machine

Hardware &
OS

Output

Chapter 3 – Differential Frequency Analysis

25

Secondly, the problem of misalignment of traces may also be caused by the

trigger signal to the oscilloscope. The trigger signal is generated by turning the light

emitting diode (LED) of the PDA ON and OFF. The LED is controlled by the Java API

supported by the PDA vendor. The Java API is the set of classes included with the Java

Development Environment. These classes are written using the Java language and run on

the JVM. Once again due to the complex and unpredictable nature of the Java run-time

environment, the Java API could also be delayed occasionally causing jitters in the

trigger signal for each frame. Other trigger mechanisms such as: activating the vibration

mode of the PDA and writing data to the USB port of the PDA, are also exploited.

However, they give no improvement over the alignment of the traces. As a result, the

LED of the PDA is chosen as the trigger signal to the oscilloscope.

Thirdly, noise from the device under test, the testing environment and

measurement equipments may also cause traces to misalign. For instance, due to the

compact size of the PDA, EM signals captured from the processor might contain noise

from other chips near by. On the other hand, the limited resolution of the oscilloscope

also introduces quantization noise. One method to eliminate noise is to have as many

traces as possible. However, the number of traces measured is limited by the scope

memory. Also, since the AES program in Java runs at least hundred times slower than the

AES assembly program, a longer frame would thus sacrifice the number of traces

acquired due to the fixed scope memory size. For detailed explanations about how the

scope memory affect the number of traces acquired, see Section 4.1.3.

3.4.2.2 Effects of Trace Misalignment in Experiments

As discussed in the previous section, temporal misalignment is a difficult experimental

problem for DEMA. A high-level programming language and a temporally shifted trigger

mechanism and noise could cause EM curves to misalign within a same acquisition set

affecting DEMA to fail.

Figure 7 below shows two aligned EM traces acquired from the ARM

Integrator/C7TDMI core module. For further details of the device under test, see Section

Chapter 3 – Differential Frequency Analysis

26

4.1.1. The purpose of this figure is to show the importance of data alignment in a DEMA

attack. To illustrate that they have good alignment, 2 traces performing the same

operation are acquired. Figure 7a and Figure 7b are both a single EM trace captured while

running the Rijndael encryption algorithm with the same key and the same plaintext.

Figure 7c is obtained by subtracting Trace 1 in Figure 7a from Trace 2 in Figure 7b.

Since these 2 traces are performing exactly the same operation, it is expected that the EM

emanation of both traces are approximately the same. The subtraction of these 2 traces is

expected to be zero. As shown in Figure 7c, the plot of their subtraction is close to zero at

every point. Note that it will not be exactly zero due to minor variations in the traces

caused by noise. Therefore, it is demonstrated that these 2 EM traces have good

alignment.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10-6

-0.2

-0.1

0

0.1

0.2
Trace 1 - Trace 2 (c)

Time (seconds)

In
du

ce
d

V
ol

ta
ge

 (u
V

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10-6

-0.2

-0.1

0

0.1

0.2
Trace 1 (a)

Time (seconds)

In
du

ce
d

V
ol

ta
ge

 (u
V

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10-6

-0.2

-0.1

0

0.1

0.2

Time (seconds)

Trace 2 (b)

In
du

ce
d

V
ol

ta
ge

 (u
V

)

Figure 7: Two Perfectly Aligned EM Traces (a & b), Trace 1 Minus Trace 2 (c)

Chapter 3 – Differential Frequency Analysis

27

Figure 8 below shows the acquired DEMA signals of 2976 EM traces measured

from the ARM Integrator/C7TDMI core module. Since all the traces captured in this

acquisition set are perfectly aligned, there is a clear spike in the differential signal at time

0.8 us. The secret key is retrieved successfully using this set of EM traces.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
-6

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Time (seconds)

In
du

ce
d

V
ol

ta
ge

 (u
V

)

Figure 8: Differential Time Signal of Perfectly Aligned EM Traces

Now let us examine the negative effect of data misalignment. Figure 9 shows the

same test as Figure 7 but executed on the PDA. For further details of the PDA, see

Section 4.3.1. Although the shape of both traces is similar, one can notice that they are

shifted in time. To better illustrate that they are not aligned, 2 traces performing the same

operation are acquired. Figure 9a and Figure 9b are both a single EM trace captured while

running the Rijndael encryption algorithm with the same key and the same plaintext.

Figure 9c is obtained by subtracting Trace 1 in Figure 9a from Trace 2 in Figure 9b.

Since these 2 traces are performing exactly the same operation, it is expected that the EM

emanation of both traces are approximately the same. However, it is not the case in this

particular test since these 2 traces are severely misaligned. As indicated in Figure 9c, the

plot of their subtraction is not zero anymore.

Chapter 3 – Differential Frequency Analysis

28

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10-3

-0.5

0

0.5

Time (seconds)

In
du

ce
d

V
ol

ta
ge

 (u
V

) Trace 1 (a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10-3

-0.5

0

0.5

Time (seconds)

In
du

ce
d

V
ol

ta
ge

 (u
V

) Trace 2(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10-3

-0.4

-0.2

0

0.2

0.4

Time (seconds)

In
du

ce
d

V
ol

ta
ge

 (u
V

)

Trace 1 - Trace 2 (c)

Figure 9: Two Misaligned EM Traces (a & b), Trace 1 Minus Trace 2 (c)

It is clear that if spikes are slightly out of alignment in time, they will cancel out

rather than reinforced when averaging. It is observed that the amplitude of the subtraction

in Figure 9c is much bigger than that in Figure 7c. Note the spurious spikes in the

differential signal shown in Figure 10 below. It is not possible to determine the key

information from the misaligned EM traces. Unlike Figure 8, no significant spike is found

in the differential signal. As a matter of fact, the power or EM spikes analyzed in DPA or

DEMA can be as small as 5 sample points wide, so a misalignment of 1 or 2 sample

points can already cause significant loss of information when traces are averaged together.

Chapter 3 – Differential Frequency Analysis

29

As a result, DPA or DEMA could fail because of the negative effect of trace

misalignment problem.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
-3

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Time (seconds)

In
du

ce
d

V
ol

ta
ge

 (u
V

)

Figure 10: Differential Time Signal of Misaligned EM Traces

3.4.3 Eliminating Trace Misalignment Using Power Spectral Density

The previous sections have discussed about the causes and effects of temporal

misalignment. In practice, temporal misalignment causes false peaks to be observed when

performing DPA or DEMA. One possible solution to align the EM traces is to use a better

trigger mechanism to the oscilloscope. However, with limited information on the PDA

specifications, it is not possible to find another trigger mechanism that is better than the

LED. Another solution to the problem is to use signal processing techniques after the

acquisition of traces.

Previous literature stated that temporal misalignment is a significant problem, but

did not give any specific methods to align traces. The frequency-based side channel

attack, DFA, presented in this thesis is intended to overcome the problem of performing

first order differential analysis on real embedded systems where uncorrelated temporal

misalignment of traces is a big concern.

The essence of the Differential Frequency Analysis (DFA) is based on the time

shifting property of Discrete Fourier Transform (DFT) for periodic signals [25]. This

property states that a shift in time is equivalent to a linear phase shift in frequency. Since

Chapter 3 – Differential Frequency Analysis

30

the frequency content depends only on the shape of a signal, the frequency content

remains unchanged in a time shift. Only the phase spectrum will be altered.

Discrete Fourier Transform of Non-Shifted Periodic Signal

)(][jweXnx →

Power Spectral Density of Non-Shifted Periodic Signal

)()()(
2 jwjwjw eXeXeX −∗=

Discrete Fourier Transform of Temporally Shifted Periodic Signal

)(][jwjwm eXemnx −→− , where m is the shift in time

Power Spectral Density of Temporally Shifted Periodic Signal

)()()()()(
2 jwjwjwjwmjwjwmjw eXeXeXeeXeeX −−− ∗=∗=

As shown in the above formula, the PSD of a temporally shifted periodic signal is

the same as the PSD of a non-shifted periodic signal. The power spectral density (PSD)

[26] is a measure of how the power in a signal changes as a function of frequency. The

power in this context is the square of Fast Fourier Transform’s (FFT) magnitude. The unit

for PSD of an EM signal measured in this thesis is µV2/MHz, whereas the unit for PSD of

a power signal is µA2/MHz.

Although the EM or power data captured in this thesis are not periodic signals, it

is still observed that the frequency contents of these discrete aperiodic signals are less

vulnerable to the effects of time shifts. In fact, the power spectral density (PSD) of a

temporally shifted EM trace is approximately the same as that of a non-shifted one. By

analyzing the EM traces in the frequency domain, the effect of temporal misalignment in

traces can be reduced.

A MATLAB simulation program is used to demonstrate that the frequency

content of a discrete aperiodic signal remains approximately the same with time shifts.

This MATLAB simulation program takes a set of real EM data from the ARM evaluation

board as the input. All traces in this set of EM data are perfectly aligned. First, the

Chapter 3 – Differential Frequency Analysis

31

average of the power spectral density of this perfectly aligned set of data is computed.

Then, the simulation program inserts time shifts to the same set of EM data in a random

fashion. The average of the power spectral density of the temporally misaligned set of

data is also computed. At the end, the power spectral density of the perfectly aligned and

the misaligned EM traces are compared with each other as shown in Figure 11 below.

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4
Average PSD of Perfectly Aligned EM Traces (a)

Frequency (MHz)

P
S

D
 (u

V
2 /M

H
z)

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

P
S

D
 (u

V
2 /M

H
z)

Average PSD of Misaligned EM Traces (b)

Frequency (MHz)

0 200 400 600 800 1000 1200
-0.2

-0.1

0

0.1

0.2

Frequency (MHz)

P
S

D
 (u

V
2 /M

H
z)

Trace 1 - Trace 2 (c)

Figure 11: PSD of Misaligned & Aligned EM Traces (a&b), Trace 1 Minus Trace 2 (c)

In Figure 11, it is illustrated that the power spectral density for both perfectly

aligned and misaligned EM signals are approximately the same. Figure 11a shows the

average PSD of perfectly aligned EM Traces, whereas Figure 11b shows the average PSD

Chapter 3 – Differential Frequency Analysis

32

of misaligned EM Traces. Figure 11c is a plot of the difference of Figure 11a and Figure

11b. As indicated in the plot, the magnitude of the difference of these power spectral

densities is so small implying that their difference is negligible. Therefore, it is shown

that the time shifts effect can be minimized in the frequency domain.

According to Kocher’s hypothesis of DPA [1], there is a significant difference in

the differential time signal of traces in subset 0 and subset 1 if the key guess is correct. In

theory, spikes in the differential signal in time domain should also appear in frequency

domain, since any changes in the time domain signals would induce changes in the

frequency domain signals. As a result, when computing the differential signal in the

frequency domain, a significant difference between the PSD of traces in subset 0 and

subset 1 is still present. In other words, subset 0 and subset 1 should have different power

spectral density distributions. Thus, the DFA algorithm can decide whether the groupings,

or the guess for the key, are correct by distinguishing these PSD distributions. If the key

guess is incorrect, the PSD distributions of subset 0 and subset 1 are identically

distributed. Hence, the differential PSD signal in the frequency domain is flat. If the key

guess is correct, there is a significant difference in the PSD distributions of subset 0 and

subset 1.

3.4.4 Runtime Analysis

Regarding the runtime analysis of DFA, the preprocessing, the PSD calculation of each

trace, in DFA runs in time θ(nmlogm). Recall from Section 3.3 that n is the total number

of traces and m is the number of sample points in each trace. After this preprocessing,

each of the 256 groupings can be tested using DFA in time θ(nm). The total runtime of

DFA attacking a 8-bit S-Box is therefore θ(nmlogm + 256nm). As for the runtime of

normal DEMA or DPA attack, there is no need of preprocessing. The total runtime is

θ(256nm). Although DFA has a slightly higher computational overhead, it is efficient in

extracting secret key under severe trace misalignment experimental conditions.

Chapter 3 – Differential Frequency Analysis

33

3.5 Other Previously Researched Side Channel Attacks

To compare the effectiveness of DFA, this thesis compares the newly proposed technique

to 3 previously researched attacks experimentally: the differential EM analysis (DEMA),

the differential Spectrogram analysis (DSA), and Waddle’s second order attack (FFT

2DPA). Before implementing these attacks in experiments, this section briefly introduces

the methodology for each attack.

3.5.1 Differential Time Analysis (DPA & DEMA)

Since there are no conclusive results of DEMA on PDA’s featuring AES in previous

research, the attack is performed and results are presented in this thesis. The methodology

of DPA or DEMA is described below.

keys 256 allfor *2 outside spike maximum of vector maxPeak
encryption AES ofkey

signal) (threshold means ofdeviation standard _

 traceand set of signal EM
}1,0{ number,set

}1,,0{ number, trace

STD_R
K

RSTD

ibT
bb

nii

b
i

=
=

=

=

∈=
−∈= K

maxPeakreturn :6
)_*2)(max()(maxPeak :5

 :4

,_ :3
}{:2

2550 ,eachfor :1
or

10

10

10

RSTDsabsK
TTs

)TSTD_DOM(TRSTD
races(T)partitionT,TT

}, , {K K
DEMA(T)DPA

−←
−←

←

←

∈ L

Also note that this thesis provides an improvement on the differential time

analysis. In the past, the correct key is retrieved if there is a peak in the differential time

signal. However, peaks caused by noise can also be observed in a wrong key guess. As

indicated in the above function, the differential time signal is compared to the two times

of standard deviation threshold signal. The standard deviation threshold signal is

Chapter 3 – Differential Frequency Analysis

34

computed using the raw time data instead of PSD. This is a better comparison since this

approach minimizes the impact of false peaks as discussed in Section 3.3.

3.5.2 Differential Spectrogram Analysis (DSA)

Spectrogram is a type of time-dependant frequency analysis. It consists of both time and

frequency information [15]. The only difference between DFA and DSA is instead of

computing the power spectral density for each EM trace in the pre-processing stage, the

spectrogram of each traces is calculated. The methodology of calculating spectrogram is

described below.

}1
2

,,0{}1
2

,,0{frequency,

size window
}1,,0{ m,spectrograin number frame

 traceand set of mspectrogra

 traceand set of signal EM
}1,0{ number,set

}1,,0{ number, trace

−=−∈=

=
−∈=

=

=

∈=
−∈=

mwpff

w
pss

ibV

ibT
bb

nii

b
i

b
i

KK

K

K

V

wFwswsb
iV

)))*w(s*w:(sb
i(TF

pss
niibb

(T)

return :5

)(HAMMING)1
2

*)1(:
2

*(:4

11FFT :3

:},,0{,each for :2
:}1,,0{ ,each for and }1,0{ ,each for :1

SPECGRAM

•←−+

−+←

∈
−∈∈

K

K

Then the set of spectrogram is partitioned into 2 groups based upon a key guess

and the corresponding plaintext similar to the procedures in DFA. The value of the least

significant bit (LSB) of the 8-bit S-Box output is computed in the first round of AES. The

mean of each group of spectrogram is calculated. At the end, the differential spectrogram

signal is computed and compared with the standard deviation threshold signal (STD_R)

as described in Section 3.3. The standard deviation threshold signal (STD_R) is

calculated in a same way as that for DFA, spectrogram is used instead of PSD.

Chapter 3 – Differential Frequency Analysis

35

3.5.3 Waddle’s Second Order Differential Attack (FFT-2DPA)

Waddle’s FFT2DPA [13] attack is a second-order differential analysis that is proposed to

defect masking countermeasure. Autocorrelation, or correlation of a trace with itself, is

used to overcome masking. The only difference between DFA and FFT-2DPA is instead

of computing the power spectral density for each EM trace in the pre-processing stage,

the autocorrelation of each traces is calculated. The methodology of calculating

autocorrelation is described below.

ibT
bb

nii

b
i traceand set of signal EM

}1,0{ number,set
}1,,0{ number, trace

=

∈=
−∈= K

A
)INVFFT(PA

FP

)FFT(TF
niibb

(T)

b
i

b
i

b
i

b
i

b
i

b
i

return:5
 :4

 :3

 :2
:}1,,0{ ,each for and }1,0{ ,each for :1

ationAutocorrel

2

←

←

←

−∈∈ K

It is also important to note that the analysis presented by Waddle et al. is transformed

back in the time domain to perform differential analysis, whereas the DFA is performed

in the frequency domain. Waddle’s attack aims to defeat masking countermeasures,

whereas DFA aims to overcome trace misalignment in first order differential analysis. In

addition, DFA does not require computing the inverse FFT to transform the signal back to

the time domain. Therefore, it requires less computational time.

Chapter 4 – Experiments

36

4 Experiments

This chapter describes the side channel attack experiments on an ARM

Integrator/C7TDMI core module and a personal digital assistant (PDA) whose identity is

not revealed to protect the vendor. The purpose of this chapter is to introduce the

equipment for measuring EM emanations and power consumption. Sections 4.1 and 4.2

present the experimental setup and results on the ARM Integrator/C7TDMI core module.

Sections 4.3 and 4.4 present the experiment setup and results on the PDA.

4.1 Experimental Setup for ARM Integrator/C7TDMI core module

Figure 12 below shows the experimental setup for measuring EM emanation and power

consumption from the ARM Integrator/C7TDMI core module. A digital oscilloscope, an

EM probe connected to a pre-amplifier, a Multi-ICE debugger, a personal computer, and

a inductive probe are used to acquire both EM and power traces from the ARM

Tntegrator/C7TDMI core module. This section describes each of these instrument setups

in details.

ARM CM7TDMI
core Moduel

EM Signal

Pre-
amplifier

EM
Probe

Trigger
Signal

PC

a1
1

a2
2
3

a34
a4

b1
b2
b3
b4

5
6
7
8

Vcc1

0

GND

0 a1
1

a2
2
3

a34
a4

b1
b2
b3
b4

5
6
7
8

Vcc1

0

GND

0

Multi ICE

Oscilloscope

Power
Signal

Inductive
Probe

Figure 12: Power and EM Measurement Setup on ARM Integrator/C7TDMI.

Chapter 4 – Experiments

37

4.1.1 ARM Integrator/CM7TDMI core module

The ARM Integrator/CM7TDMI core module is ideally suited for designs that require

low power, small size and high performance. Hence, it is chosen as the experimental

device in this thesis because it is widely used in embedded devices such as pagers,

wireless handsets, and personal digital assistants (PDA).

This ARM evaluation board is used as a standalone development system

connected to a Multi-ICE debugger. The Multi-ICE debugger is used to download image

files, the byte code produced by the ARM compiler, to the core module. It is also used to

debug the assembly code. There are seven main components in the ARM

Integrator/CM7TDMI core module: two sets of diagnostic connectors and five test ports.

The seven components consist of the ARM7TDMI microprocessor core [16], a core

module FPGA, a volatile memory, a synchronous static RAM (SSRAM) controller, a

clock generator, system bus connectors, and Multi-ICE connectors. Figure 13 illustrates

the system architecture of the core module.

Figure 13: System Architecture of the ARM Integrator/CM7TDMI Core Module.

The ARM7TDMI microprocessor core is a separate chip on the evaluation board

and is a 32-bit embedded Reduced Instruction Set Computer (RISC) processor. In

addition, this processor core has both 32-bit unidirectional and bidirectional data bus, a

32-bit address bus going out to the memory and a three-stage pipeline [16]. The clock of

the processor core is set to 40MHz for all experimental results collected in section 4.2

and section 4.4. In fact, EM emanations and power consumption both arise as a

ARM
core

SSRAM

FPGA

SDRAM

Multi-ICE

Chapter 4 – Experiments

38

consequence of current flows within the control, I/O, data processing or other parts of the

ARM module. Of these numerous leakages, those induced by data processing operations

carry the most compromising information. Therefore, the EM emanation from and the

power consumption of the core processor are of particular interest in this thesis. For more

information about the ARM evaluation board, see [16].

4.1.2 Trigger Setup

To measure EM and power traces, a trigger signal is needed to notify the oscilloscope

when to start recording a trace. In the experiments on the ARM core module, the trigger

signal is sent in the form of a software interrupt from the core module to the oscilloscope.

To send an interrupt, the interrupt controller is enabled by setting the IRQ enable set

register (CM_IRQ_ENSET) to ‘1’. The output pin of software interrupt is the nIRQ

signal. Then, the oscilloscope starts recording a frame when the nIRQ signal goes from

high to low. A program is written in assembly language to generate the trigger signal to

the oscilloscope. The software interrupt clear register (CM_SOFT_INTCLR) is first set to

‘1’ to put nIRQ to high, 40 “NOP” instructions are followed. Then, the software interrupt

set register (CM_SOFT_INTSET) is then to ‘0’ to put nIRQ to low, another 40 “NOP”

instructions are executed to end the trigger. For more information on interrupts, refer to

the ARM user’s guide [17].

4.1.3 Digital Phosphor Oscilloscope

All the EM and power traces obtained in this thesis are captured with a Tektronix TDS

7254 digital oscilloscope. This section describes the features of the oscilloscope used in

the experiments.

The oscilloscope can record up to 4 input signals simultaneously. For this

particular experiment, Channel 1 is the input trigger signal from the ARM evaluation

board. As mentioned in the trigger setup section above, the trigger signal nIRQ goes from

high to low. Therefore, the trigger mode of the oscilloscope is set to the negative edge

mode. The coupling mode is set to noise reject to minimize the noise in the trigger signal.

Channel 2 is connected to an EM probe to measure the EM emanation from the ARM

Chapter 4 – Experiments

39

core processor. Channel 3 is connected to an inductive probe to record the power

consumption of the ARM core processor.

For all traces measured for the ARM experiments, the HiRes acquisition mode is

used. In HiRes mode, the instrument creates a record point by averaging all samples

taken during an acquisition interval. It results in a higher resolution, less noise, and lower

bandwidth waveform. Of all the modes available, the HiRes mode gives the best quality.

To eliminate noise, averaging of at least several hundred of frames is required.

The digital oscilloscope can acquire multiple frames in one recording in a special

acquisition mode called FastFrame. In the FastFrame mode, multiple frames can be

captured and each can be viewed and analyzed individually. The number of data points in

each trace is specified by the record length and the number of traces is specified by the

frame count. Each frame is captured when a valid trigger occurs.

The user can adjust the time duration of each frame and the sampling rate using

the Scale and Resolution button of the scope. However, there is a limitation on the scope

memory (record length) with a maximum of 32 million sample points. Therefore, users

have to make tradeoffs between resolution and time duration accordingly. The following

equations show the inter-dependency of scope memory (record length), time duration,

and resolution.

Time Duration (s) = Sample Interval (s/sample) * Record Length (samples)

Sample Interval (s/sample) = Resolution (s/sample) = 1/Sampling Rate (samples/s)

As one can see from the above equations, increasing the time duration decreases

the sampling rate, whereas increasing the sampling rate decreases the time duration.

Resolution is sacrificed by having a long frame. For instance, in a frame of 2 µs with

5000 sample points, the sampling period is (2 µs / 5000) = 0.4 ns. The sampling rate is

thus (1 / 0.4 ns) = 2.5 Giga samples/s. And the frequency span is half of the sampling rate,

(0.5 * 2.5 Giga samples/s) = 1.25 GHz.

Chapter 4 – Experiments

40

For instance, an AES encryption algorithm is too long to fit into one frame. In

most cases, the adversary is only interested in a small section of the Rijndael encryption

algorithm, particularly the output of the S-Box in 1 round of AES. Therefore, it is

preferable to pinpoint the attack point by zooming into the section of interest using the

delay mode on the oscilloscope. The delay mode allows the oscilloscope to start

displaying waveform by a user-specified period after the start of the trigger signal. For

instance, if the specified delay period is 1 ms, the scope will display a waveform 1 ms

after the start of the trigger signal. As a result, the attacker can pinpoint the exact section

that contains the load instruction at the output of the S-Box. Hence, this allows the

attacker to increase the frame resolution and capture only the desired section into a single

frame. For other features of the oscilloscope, see [22].

For all the tests on the ARM evaluation board, 2976 frames are captured in each

acquisition. The sampling rate is 2.5GS/s. The duration of each frame is 2 µs. There are

5000 sample points in each frame. Table 1 below summarizes all the oscilloscope setup

for the experiments on the ARM evaluation board.

Table 1: Summary of Oscilloscope Setup for Experiments on ARM

HiRes Acquisition mode
FastFrame

Trigger mode Negative edge
Trigger coupling Noise reject
Frame count 2976
Record length 5000
Delay 5.6 µs
Duration of 1 frame 2 µs
Frequency span 1.25 GHz
Sampling rate 2.5 Giga samples/s
Channel 1 Trigger signal
Channel 2 EM signal
Channel 3 Current signal

Chapter 4 – Experiments

41

4.1.4 EM Probe

A near field EM probe by Electro-Metrics Inc. (Model EM-6992) is used to measure the

EM emanation from the ARM processor core. The probe is connected to the scope using

a 50-ohm coaxial cable. A preamplifier is inserted between the EM probe and the

oscilloscope to improve the overall measurement sensitivity. The typical gain of the

preamplifier is approximately 22 dB. The probe can test radiated emissions over a broad

range of frequencies from below 100 kHz to 1 GHz. See [18] for more details about the

pre-amplifier.

Probe choice is determined by the type of signal under observation, signal

strength, and the physical size of the area to be investigated. It is important to note that

the EM field can be decomposed into 2 primary components: an electric field and a

magnetic field. The electric field fails for low frequency but carries different information

than the magnetic one [19]. By trial and error, it is observed that the magnetic probe with

a shape of a 1-cm loop gives the best EM signal quality. This probe has low sensitivity

which helps in isolating an emission source more precisely. The loop is wound within a

balanced Faraday shield that reduces its response to electric fields to a negligible factor.

Therefore, it shows that the EM radiation from the ARM processor core has a stronger

magnetic field component. The primary pickup direction is broadside to the loop, with

sharp notches in the pickup pattern in the plane of the loop. Even small changes in the

distance from the probe to the item under test can yield large variations in amplitude.

This magnetic probe is put directly on top of the ARM processor core to obtain the best

EM signal quality.

4.1.5 Inductive Probe

The power consumption of the ARM processor core is measured in a form of current in

this thesis. The amount of voltage drawn on the ARM processor core is 3.3V, the current

consumption can be easily converted to power consumption by multiplying the current

with the supply voltage. On the Integrator/CM7TDMI core module, there are two test

points (TP4 and TP5) located on the two ends of a zero-ohm resistor (R16). This zero-

ohm resistor is a wire indeed. According to [17], these two test points can measure the

Chapter 4 – Experiments

42

current drawn by the ARM7TDMI processor core. The zero-ohm resistor is the power

line that connects the processor core to its power supply. Therefore, the core will draw

different amount of power depending on the instructions executed. To measure this

current, an inductive probe, Tektronix TCP202 DC/AC Inductive Current Probe [23], is

connected to TP4 and TP5 and the zero-ohm resister is soldered off. The inductive probe

is connected to the power line, and thus, the current change in the processor core will

induce a change in the inductor. The inductive probe is connected to a digital phosphor

oscilloscope where the change in current is recorded.

4.1.6 Experimental Methodology

Step 1: Loading the AES Encryption Program to the ARM Evaluation Board

The symmetric key algorithm undergoing the side channel attack is the AES encryption

with a master key length of 128 bits. The program under test is written in assembly

language using the optimized Rijndael implementation recommended in [20]. The test

program is written such that the AES encryption is run in a loop for 2796 times with

random plaintext inputs. The input plaintexts are kept in record for statistical analysis

with MATLAB after the data capture step. The plaintexts are specially prepared in a way

such that only the data at the output of the 1st S-Box would be different in the first round

of Rijndael. The operands at the output of the rest of the 15 S-Boxes in the first round are

kept constant in order to minimize the noise created by these S-Boxes. To create such

effect, only the first 8 most significant bits of the plaintexts are random, the rest of all

other bits are fixed.

The AES encryption assembly program is then converted into an image file using

the ARM compiler. Next, turn on the ARM evaluation board. Launch the Multi-Ice server.

First, load the image file using the AXD Debugger to set the clock speed of the ARM

processor core to 40 MHz. Then load the image file containing the AES encryption test

program.

Chapter 4 – Experiments

43

Step 2: Capturing EM or Power Traces

Before running the encryption algorithm, place the EM probe on top of the core processor.

The methodology for capturing power traces is basically the same as that for capturing

EM traces. The only difference is that the inductive probe is used instead of the EM probe.

The inductive probe is already connected to the test points on the board. Hence, no

additional setup is required for measuring power data. Next, setup the oscilloscope

according to Table 1 in Section 4.1.3. Then, execute the AES encryption program. After

capturing the waveforms on the oscilloscope, generate a data file containing the EM or

power data of the ARM core processor. Such data file is then exported to MATLAB for

statistical analysis.

Step 3: Statistical Analysis with MATLAB

After step 2, statistical analysis is done on the raw EM or power data with a MATLAB

program. The analysis program is written according to the DFA attack methodology

described in Section 3.3. The MATLAB program produces a correct key guess after

running through all possible keys. See Appendix 2 for the analysis program in MATLAB.

4.2 Experimental Results for Attacks on ARM Evaluation Board

This section presents the experimental results from the ARM evaluation board. Both EM

emanation and power consumption are measured from the ARM evaluation board. First

of all, results of EM analysis are illustrated, and then followed by results of power

analysis. The purpose of this section is to evaluate the effectiveness of the proposed

Differential Frequency Analysis to extract the secret key of the Rijndael encryption

algorithm. In addition, an attack on the desynchronization countermeasure for AES

against DEMA using the new frequency-based attack is performed. To verify that the

results presented are consistent, all the experiments are repeated for 3 times.

Chapter 4 – Experiments

44

4.2.1 EM Analysis on AES

In this experiment, EM traces are captured from the ARM core processor. The AES 128-

bit encryption algorithm without countermeasure is loaded to the ARM evaluation board.

The correct key of the S-Box being attacked is 0xD2. In order to recover the master key

of the encryption algorithm, the differential EM analysis (DEMA) is first performed.

Next, the differential EM frequency analysis (DEMFA) is performed on the same set of

data.

4.2.1.1 Differential Electromagnetic Analysis (DEMA)

Before investigating the effectiveness of Differential Frequency Analysis for EM analysis,

it is necessary to verify if the set of EM traces measured from the ARM evaluation board

leaks any information about the master key of the AES encryption algorithm. Therefore,

the first analysis done on the EM traces is the previously researched DEMA attack.

In the DEMA attack, EM traces are partitioned into 2 groups using the partition

function D(P, b, K) according to the corresponding plaintext and key guess. The value of

the least significant bit (LSB) of the 8-bit S-Box output is computed in the first round of

AES. Refer to Figure 4 for the illustration of trace partitioning. Figure 14 below shows

the differential time signal for the correct partition with the key value equals to 0xD2.

The differential signal is computed by subtracting the average of traces in group 0 from

the average of traces in group 1. Figure 14 shows a large spike occurring at regions

around 0.8 µs suggesting that the partition function D(P, b, K) is correlated to the data

being processed. The spike at regions around 0.8 µs means that the output of the S-Box is

computed in this particular time. On the other hand, the differential time signal in Figure

15 is merely composed of noise for an incorrect key guess. There is no significant spike

observed in this differential signal.

Chapter 4 – Experiments

45

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10-6

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

In
du

ce
d

V
ol

ta
ge

 (u
V

)

Time (seconds)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10-6

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

In
du

ce
d

V
ol

ta
ge

 (u
V

)

Time (seconds)

Figure 14: DEMA on ARM (correct key=0xD2) Figure 15: DEMA on ARM for (wrong

key=0xA5)

Figure 16 below shows the all keys search of 256 possible key values. The

analysis computes and compares the absolute value of the differential time signal and

record the maximum peak outside 2*STD_R for each 256 possible key guesses. Refer to

Section 3.5.1 for details of the DEMA methodology. As demonstrated in Figure 16, the

key value 0xD2 has the biggest spike among all keys. Hence, the correct key is

successfully extracted from the DEMA attack on the ARM evaluation board.

0

0.002
0.004

0.006
0.008

0.01

0.012
0.014

0.016
0.018

0.02

00 0F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1 F0 FF
8-bit Key Values

In
du

ce
d

Vo
lta

ge
 (u

V)

correct key = 0xD2

c

Figure 16: All Keys Search of DEMA on ARM

The above DEMA experimental results justify that the set of EM data measured

leak compromising information about the master key of the AES encryption algorithm.

Hence, Differential Frequency Analysis (DFA) is performed on the same set of EM data

Chapter 4 – Experiments

46

in the next section to determine whether this new attack can extract the secret key as in

DEMA.

4.2.1.2 Differential EM Frequency Analysis (DEMFA)

Knowing that DEMA is possible on the ARM evaluation board, the purpose of this test is

to determine whether DEMFA could successfully extract the secret key of the Rijndael

encryption algorithm. In this analysis, the EM traces are partitioned into 2 groups

according to the corresponding plaintext and key guess similar to the DEMA attack. The

value of the least significant bit (LSB) of the 8-bit S-Box output is computed in the first

round of AES. Refer to Figure 4 for the illustration of trace partitioning. In this attack,

one extra step is taken in this analysis, the raw time domain EM signal is transformed to

the frequency domain. The power spectral density of each EM trace is computed in this

pre-processing stage. Refer to Section 3.3 for details of the DEMFA methodology.

Figure 17 below shows the differential PSD signal for the correct partition with

the key value equals to 0xD2. Note that this is a differential frequency signal. Unlike

DEMA, the differential frequency signal is computed by subtracting the averaged power

spectral density for traces in group 0 from the averaged power spectral density for traces

in group 1. The y-axis now represents the PSD magnitude and the x-axis represents the

frequency. The differential frequency signal in Figure 17 has notably higher amount of

area outside of the ±2*STD_R region. Recall from Section 3.3 that the ±2*STD_R region

serves as a benchmark to determine whether a spike in the differential frequency signal is

significant. The differential frequency signal in Figure 18 has drastically less spikes

outside the ±2*STD_R region for an incorrect key guess.

Chapter 4 – Experiments

47

0 200 400 600 800 1000 1200

-4

-2

0

2

4

6

x 10-4

Frequency (MHz)

P
S

D
 (u

V
2 /M

H
z)

Difference of PSD
2*STD
-2*STD

0 200 400 600 800 1000 1200

-4

-2

0

2

4

6

x 10-4

Frequency (MHz)

P
S

D
 (u

V
2 /M

H
z)

Differential of PSD
2*STD
-2*STD

Figure 17: DEMFA on ARM (correct
key=0xD2)

Figure 18: DEMFA on ARM (wrong
key=0xA5)

Figure 19 shows the all keys search of 256 possible key values. The analysis

computes and compares the total area of spikes that are beyond the ±2*STD_R region for

all 256 possible key values of the AES S-Box being attacked. As demonstrated in Figure

19, the key value 0xD2 has the highest amount of total area of PSD spikes beyond the 2

times standard deviation threshold region among all keys. Hence, the correct key is

successfully recovered from the DEMFA.

0

0.01

0.02

0.03

0.04

0.05

0.06

00 0F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1 F0 FF
8-Bit Key Values

PS
D

 (u
V^

2/
M

H
z)

correct key = 0xD2

Figure 19: All Keys Search of DEMFA on ARM

The experimental results from above justify that the differential EM frequency

analysis is at least as effective as the previously researched DEMA attack.

Chapter 4 – Experiments

48

4.2.2 EM Analysis on a Single Load Instruction

To further investigate the behavior of the Differential Frequency Analysis (DFA), this

section describes an experiment that measures EM radiation from the ARM evaluation

board. Instead of running the Rijndael encryption algorithm, the test program executes a

“Load” instruction of AES S-Box sandwiched between several “NOP” instructions. The

purpose of this test is to verify that only the “Load” instruction is responsible of the

difference in the differential PSD signal in the DEMFA attack.

In this test, one has to locate where the S-Box “Load” instruction occurs at first.

Using the same techniques as DEMA, it is observed that the “Load” instruction occurs

between sample points 2000 to 2300. Knowing exactly where the “Load” instruction is

located in time, 2 verification tests has to be done. One test involves keeping the EM

signals containing only “NOP” instructions but filtering out all signals of the S-Box

“Load” instruction. The purpose of this attack is to determine whether the “NOP”

instructions have any effects on the DEMFA results. Theoretically, these “NOP”

instructions would not compromise any information of the secret key since they do not

contain any information of the data manipulated in the algorithm. Figure 20 shows the all

keys search results. The correct key cannot be determined since the S-Box “Load”

instruction is not present in the EM traces.

0

0.005

0.01

0.015

0.02

0.025

00 0F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1 F0 FF
8-Bit Key Values

PS
D

 (u
V^

2/
M

H
z)

correct key = 0x2B

Figure 20: All Keys Search of DEMFA on ARM excluding the “Load” Instruction

Chapter 4 – Experiments

49

The other test is the exact opposite of the previous one. It involves keeping the

EM signals containing only the S-Box “Load” instruction and filtering out the rest of the

“NOP” instructions. The DEMFA attack is performed on this set of signal with only the

“Load” instruction EM data. Figure 21 shows the all keys search results by comparing the

differential PSD signal for each key guess. It is clearly indicated that the attack is able to

extract the correct master key from the EM data containing only the AES S-Box “Load”

signals.

0

0.002

0.004

0.006

0.008

0.01

0.012

00 0F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1 F0 FF
8-Bit Key Values

PS
D

 (u
V^

2/
M

H
z)

correct key = 0x2B

Figure 21: All Keys Search of DEMFA on ARM for the “Load” Instruction

These two tests, DEMFA on S-Box “Load” instruction and DEMFA on “NOP”

instructions, demonstrate that only the S-Box “Load” is responsible for the significant

difference in the averaged power spectral density distribution of group 0 and group 1 for

a correct key guess. Therefore, it is confirmed experimentally that spikes appeared in the

differential signal in time domain also appear in frequency domain, since any changes in

the time domain signals would induce changes in the frequency domain signals. As a

result, when computing the differential signal in the frequency domain, a significant

difference between the PSD traces in subset 0 and subset 1 is still present.

Chapter 4 – Experiments

50

4.2.3 EM Analysis on AES with Countermeasure

Having shown that the AES implementation is completely broken by both DEMA and the

new DEMFA attack, this test perform the same EM attacks on the Rijndael encryption

with a countermeasure implemented. Some countermeasures for DEMA consist in

introducing desynchronization in the execution of the process so that the curves are not

aligned anymore within a same acquisition set. For example, there exist various

techniques such as fake cycle insertions, unstable clocking or random delays [21]. The

purpose of this experiment is to investigate whether the desynchronization

countermeasure can protect the symmetric key algorithm against DEMA and DEMFA

attacks.

In this test, the original AES encryption algorithm is modified to randomly insert

“NOP” instructions in order to create random delay in each EM frame. The aim of this

countermeasure is to create the effect of temporal misalignment in EM traces.

4.2.3.1 Differential Electromagnetic Analysis (DEMA)

Figure 22 shows the all keys search of 256 possible key values of the DEMA attack. The

analysis computes and compares the absolute value of the differential time signal and

record the maximum peak outside 2*STD_R for all 256 possible key values of the S-Box.

As demonstrated in Figure 22, the key value 0xD2 does not have the biggest spike among

all keys. Hence, the correct key cannot be extracted from this attack. This test shows that

the desynchronization countermeasure is effective against DEMA.

Chapter 4 – Experiments

51

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

00 0F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1 F0 FF
8-Bit Key Values

In
du

ce
d

Vo
lta

ge
 (u

V)

correct key = 0xD2

c

Figure 22: All Keys Search of DEMA on ARM for AES with Countermeasure

4.2.3.2 Differential EM Frequency Analysis (DEMFA)

Figure 23 shows the all keys search of 256 possible key values of the frequency attack.

This attack computes and compares the total area of spikes that are beyond the

±2*STD_R region for all 256 possible key values of the AES S-Box being attacked. As

illustrated in Figure 23, the key value 0xD2 has the highest amount of total area of PSD

spikes beyond the 2 times standard deviation threshold region among all keys. The

correct key is successfully extracted. Hence, the proposed DEMFA attack is shown to be

able to defect the desynchronization countermeasure that randomly inserts time shifts.

0

0.01

0.02

0.03

0.04
0.05

0.06

0.07

0.08

0.09

0.1

00 0F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1 F0 FF
8-Bit Key Values

PS
D

 (u
V^

2/
M

H
z)

correct key = 0xD2

Figure 23: All Keys Search of DEMFA on ARM for AES with Countermeasure

Chapter 4 – Experiments

52

4.2.4 Power Analysis on AES

This section presents the experimental results of power analysis on the ARM evaluation

board. The purpose of the experiments is to verify that the results from the EM emanation

agree with the power consumption of the ARM core processor.

Before investigating the effectiveness of Differential Frequency Analysis for

power traces, it is once again necessary to verify if the set of power traces measured from

the ARM evaluation board leaks any information about the master key of the AES

encryption algorithm. Therefore, the first analysis done on the power traces is the

previously researched DPA attack.

In this experiment, power traces are captured from the ARM core processor. The

AES 128-bit encryption algorithm without countermeasure is loaded to the ARM

evaluation board. The correct key of the S-Box being attacked is 0xD2. In order to

recover the master key of the encryption algorithm, the differential power analysis (DPA)

is first performed. Next, the differential power frequency analysis (DPFA) is performed

on the same set of data.

4.2.4.1 Differential Power Analysis (DPA)

In this DPA attack, power traces are partitioned into 2 groups according to the

corresponding plaintext and key guess. The value of the least significant bit (LSB) of the

8-bit S-Box output is computed in the first round of AES. Refer to Figure 4 for the

illustration of trace partitioning. Figure 24 below shows the differential time signal for

the correct partition with the key value equals to 0xD2. The differential signal is

computed by subtracting the average of traces in group 0 from the average of traces in

group 1. Figure 24 shows a large spike occurring at regions around 0.8 µs suggesting that

the partition function D(P, b, K) is correlated to the data being processed. The spike at

regions around 0.8 µs means that the output of the S-Box is computed in this particular

time. On the other hand, the differential time signal in Figure 25 is merely composed of

noise for an incorrect key guess. There is no significant spike observed in this differential

time signal.

Chapter 4 – Experiments

53

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10-6

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10-3

In
du

ce
d

C
ur

re
nt

 (u
A

)

Time (seconds)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10-6

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10-3

In
du

ce
d

C
ur

re
nt

 (u
A

)

Time (seconds)

Figure 24: DPA on ARM (correct key=0xD2) Figure 25: DPA on ARM (wrong key=0xA5)

The DPA results confirm that the attack point, the output of AES S-Box occurs at

around time 0.8 µs. The results agree with the DEMA results presented earlier. Figure 26

shows the all keys search of 256 possible values. The analysis computes and compares

the absolute value of the differential time signal and record the maximum peak outside

2*STD_R for each 256 possible key values of the S-Box. As demonstrated from Figure

26, the key value 0xD2 has the biggest spike among all keys. Hence, the correct key is

successfully recovered using the DPA attack.

0

0.0005

0.001

0.0015

0.002

0.0025

00 0F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1 F0 FF
8-Bit Key Values

In
du

ce
d

C
ur

re
nt

 (u
A

)

correct key = 0xD2

Figure 26: All Keys Search of DPA on ARM

The above DPA results justify that the set of power data measured leak

compromising information about the master key of the AES encryption algorithm. Hence,

Chapter 4 – Experiments

54

Differential Frequency Analysis is performed on the same set of power data in the next

section determine whether this new attack can extract the secret key as in DPA.

4.2.4.2 Differential Power Frequency Analysis (DPFA)

Knowing that DPA is possible on the ARM evaluation board, the purpose of this test is to

determine whether DFA could successful extract the master key of Rijndael encryption

algorithm using the same set of power traces. In this analysis, the power traces are

partitioned into 2 groups according to the corresponding plaintext and key guess similar

to the DPA attack. The value of the least significant bit (LSB) of the 8-bit S-Box output is

computed in the first round of AES. Refer to Figure 4 for the illustration of trace

partitioning. In this attack, one extra step is taken in this analysis, the raw time domain

power signal is transformed to the frequency domain. The power spectral density of each

power trace is computed in this step. Refer to Section 3.3 for details of the DPFA

methodology.

Figure 27 below shows the differential signal for the correct partition with the key

value equals to 0xD2. Note that this is a differential frequency signal. Unlike DPA, the

differential frequency signal is computed by subtracting the averaged power spectral

density for traces in group 0 from the averaged power spectral density for traces in group

1. The differential frequency signal in Figure 27 has notably higher amount of area

outside of the ±2*STD_R region. Recall from Section 3.3 that the ±2*STD_R region

serves as a benchmark to determine whether a spike in the differential frequency signal is

significant. The differential signal in Figure 28 has drastically less spikes outside the

±2*STD_R region for an incorrect key guess.

Chapter 4 – Experiments

55

0 200 400 600 800 1000 1200
-4

-3

-2

-1

0

1

2

3

4
x 10-6

Frequency (MHz)

P
S

D
 (u

A
2 /M

H
z)

Difference of PSD
2*STD
-2*STD

0 200 400 600 800 1000 1200
-4

-3

-2

-1

0

1

2

3

4
x 10-6

Frequency (MHz)

P
S

D
(u

A
2 /M

H
Z)

Difference of PSD
2*STD
-2*STD

Figure 27: DPFA on ARM (correct key=0xD2) Figure 28: DPFA on ARM (wrong
key=0xA5)

Figure 29 shows the all keys search of 256 possible values. The analysis computes

and compares the total area of spikes that are beyond the ±2*STD_R region for all 256

possible key values of the Rijndael S-Box being attacked. As illustrated in Figure 29, the

key value 0xD2 has the highest amount of total area of PSD spikes beyond the 2 times

standard deviation threshold region among all keys. Hence, the correct key is successfully

extracted from the DPFA attack.

0.00E+00

1.00E-04

2.00E-04

3.00E-04

4.00E-04

5.00E-04

6.00E-04

00 0F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1 F0 FF
8-Bit Key Values

PS
D

 (u
A

^2
/M

H
z)

correct key = 0xD2

Figure 29: All Keys Search of DPFA on ARM

The experimental results from above justify that the DPFA is at least as effective

as the previously researched DPA attack.

Chapter 4 – Experiments

56

4.2.5 Power Analysis on AES with Countermeasure

Having shown that the AES implementation is completely broken by both DPA and the

new DPFA attack, this test perform the same power attacks on the Rijndael encryption

with a countermeasure implemented. Some countermeasures for DPA consist in inserting

random delays. The purpose of this experiment is to investigate whether the

desynchronization countermeasure can protect the symmetric key algorithm against DPA

and DPFA attacks.

In this test, the original AES encryption algorithm is modified to randomly insert

“NOP” instructions to create random delay in each power frame. The aim of this

countermeasure is to create the effect of temporal misalignment in power traces.

4.2.5.1 Differential Power Analysis (DPA)

Figure 30 shows the all keys search of 256 possible key values of the DPA attack. The

analysis computes and compares the absolute value of the differential time signal and

record the maximum peak outside 2*STD_R for all 256 possible key values of the S-Box.

As demonstrated in Figure 30, the key value 0xD2 does not have the biggest spike among

all keys. Hence, the correct key cannot be extracted from this attack. The

desynchronization countermeasure is effective against DPA.

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

00 0F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1 F0 FF
8-Bit Key Values

In
du

ce
d

C
ur

re
nt

 (u
A

)

correct key = 0xD2

Figure 30: All Keys Search of DPA on ARM for AES with Countermeasure

Chapter 4 – Experiments

57

4.2.5.2 Differential Power Frequency Analysis (DPFA)

Figure 31 shows the all keys search of 256 possible key values of the frequency attack.

The analysis computes and compares the total area of spikes that are beyond the

±2*STD_R region for all 256 possible key values of the AES S-Box being attacked. As

illustrated from Figure 31, the key value 0xD2 has the highest amount of total area of

PSD spikes beyond the 2 times standard deviation threshold region among all keys. The

correct key is successfully extracted. Hence, the proposed DPFA attack is shown to be

able to defect the desynchronization countermeasure that randomly inserts time shifts.

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

00 0F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1 F0 FF
8-Bit Key Values

PS
D

 (u
A

^2
/M

H
z)

correct key = 0xD2

Figure 31: All Keys Search of DPFA on ARM for AES with Countermeasure

In summary, the experimental results in this section show that both the EM

emanation and power consumption of the ARM evaluation board leak secret information

about the symmetric key algorithm. The master key is also successfully extracted even

when countermeasure is implemented using the new side channel attack, the Differential

Frequency Analysis (DFA). It is confirmed experimentally that DFA is more effective

than previously researched DEMA and DPA.

Chapter 4 – Experiments

58

4.3 Experimental Setup for PDA

Figure 32 below shows the experimental setup for measuring EM emanation from a PDA.

A digital oscilloscope and an EM probe connected to a pre-amplifier are used to acquire

EM traces from the PDA. This section describes the instrumental setup in details.

EM Signal

PDA

Oscilloscope

Pre-
amplifier

EM
Probe

Trigger
Signal

Figure 32: EM Measurement Setup on PDA

4.3.1 PDA

To protect the vendor identity, the PDA model is not revealed in this thesis. The shielding

on the back of this wireless Java-based PDA is removed to expose the processor such that

the EM probe can be placed directly on top. All applications for this PDA must be written

in Java. The PDA has a much more complex architecture than the ARM

Integrator/CM7TDMI core module. Its processor operates at a higher clock frequency. It

also consists of other components such as LCD screen, radio antenna and receiver, non-

volatile memory, etc. Only the EM side channel is available from this PDA.

4.3.2 Trigger Setup

To measure EM traces, a trigger signal is needed to notify the oscilloscope when to start

recording a trace. In the experiments on the PDA, the trigger signal is generated by

switching the light emitting diode (LED) of the PDA ON and OFF. The LED is turned

ON and OFF using the Java API supported by the PDA vendor. To start the trigger signal,

the LED is first turned ON and then turned OFF. The voltage difference between the ON

and OFF state of the LED is used to trigger the oscilloscope.

Chapter 4 – Experiments

59

4.3.3 Digital Phosphor Oscilloscope

The setup of the oscilloscope for PDA experiments is basically similar to the setup

described in Section 4.3.3. Note that for all the traces measured from the PDA, the peak

detect mode is used instead. Due to the memory restriction of the scope as discussed in

Section 4.1.3, the frequency span of the EM data measured from the PDA is low

comparing to that from the ARM evaluation board. Of all the modes available, the peak

detect mode gives the best quality for EM signals captured at low frequency. In this

acquisition mode, the scope alternates between saving the lowest sample in one

acquisition interval and the highest sample in the next acquisition interval. Also note that

the trigger signal goes from low to high, a positive edge trigger mode is used on the

oscilloscope.

For all the tests on the PDA, 1030 frames are captured in each acquisition. The

sampling rate is 25MS/s. The duration of one frame is 1 ms, There are 25000 sample

points in each frame. Table 2 below summarizes the oscilloscope setup for experiments

on PDA.

Table 2: Summary of Oscilloscope Setup for Experiments on PDA

Peak detect Acquisition mode
FastFrame

Trigger mode Positive edge
Trigger coupling Noise reject
Frame count 1303
Record length 25000
Delay 0 ms
Duration of 1 frame 1 ms
Frequency span 12.5 MHz
Sampling rate 25 Mega samples/s
Channel 1 Trigger signal
Channel 2 EM signal

Chapter 4 – Experiments

60

4.3.4 EM Probe

The EM probe used is the same as the one discussed in section 4.1.4. The EM probe is

placed directly on top of the processor of the PDA.

4.3.5 Experimental Methodology

Step 1: Loading the AES Encryption Program to the PDA

The symmetric key algorithm undergoing the side channel attack is the AES encryption

with a master key length of 128 bits. The program under test is written in Java using the

optimized Rijndael implementation recommended in [20]. The test program is written

such that the AES encryption is run in a loop for 1303 times with random plaintext inputs.

See Appendix 3 for the Java code of the AES implementation. The input plaintexts are

kept in record for statistical analysis with MATLAB after the data capture step. The

plaintexts are specially prepared in a way such that only the data at the output of the 1st S-

Box would be different in the first round of Rijndael. The operands at the output of the

rest of the 15 S-Boxes in the first round are kept constant in order to minimize the noise

created by these S-Boxes. To create such effect, only the first 8 most significant bits of

the plaintexts are random, the rest of all other bits are fixed. To capture EM signals from

a PDA, load the AES encryption program to the PDA.

Step 2: Capturing EM Traces

Next, connect LED as the trigger signal to the oscilloscope. Before running the

encryption algorithm, place the EM probe on top of the processor of PDA. It is observed

that the location of the EM probe will affect the quality of the signal captured. By trial

and error, it is observed that by placing the probe directly on top of the processor chip at a

zero-degree angle gives the best EM signal quality. Next, setup the oscilloscope

according to Table 2 in Section 4.3.3 and execute the AES encryption program. After

capturing the waveform on the oscilloscope, generate a data file containing the EM

emanation of the PDA processor. Such data file is then exported to MATLAB for

statistical analysis.

Chapter 4 – Experiments

61

Step 3: Statistical Analysis with MATLAB

After step 2, statistical analysis is done on the raw EM data with a MATLAB program.

The analysis program is written according to the DFA attack methodology described in

Section 3.3. The MATLAB program produces a correct key guess after running through

all possible keys. See Appendix 2 for the analysis program in MATLAB.

4.4 Experimental Results for Attacks on PDA

This section presents the experimental results from the PDA. Since it is not possible to

measure power consumption of the PDA, only EM emanations are measured from the

PDA. This section investigates the threat of EM analysis on PDA’s. The purpose of this

section is to evaluate the effectiveness of the proposed Differential Frequency Analysis to

extract the secret key of the Rijndael encryption algorithm when uncorrelated temporal

misalignment of traces is severe. In order to make sure that the results are consistent, all

the experiments are repeated for 3 times.

4.4.1 EM Analysis on AES

In this experiment, EM traces are captured from the PDA running the Rijndael encryption

without any countermeasures implemented. First of all, the simple EM analysis (SEMA)

is used to demonstrate that the sequence of instructions executed on the PDA can be

revealed from a single EM trace. In order to extract the master key of the encryption

algorithm, the differential EM analysis (DEMA) is first performed. Next, the differential

EM frequency analysis (DEMFA) is performed on the same set of data.

4.4.1.1 Simple Electromagnetic Analysis (SEMA)

According to Kocher, simple power analysis can yield information about a device’s

operation as well as key material. Similarly for simple electromagnetic analysis (SEMA),

experimental results show that the sequence of instructions executed on the device under

test can be also revealed. Therefore, it can be used to break cryptographic

implementations in which the execution path depends on the data being processed. Figure

33 below shows the scope capture of an AES encryption with 192-bit key length of a

single EM frame. Twelve rounds of AES transformations are clearly shown in the figure.

In fact, an adversary can determine the key length from simply inspecting the number of

Chapter 4 – Experiments

62

rounds being executed during an AES encryption. In other words, for AES with 256 bit

key length, one would expect to see 14 rounds from the EM capture. Hence, SEMA can

reveal the number of rounds in the AES encryption to determine the key length.

Figure 33: SEMA on PDA for AES 192-bit

4.4.1.2 Differential Electromagnetic Analysis (DEMA)

The AES 128-bit encryption algorithm without countermeasure is loaded to the PDA. The

correct key of the S-Box is 0x5C. Before investigating the effectiveness of Differential

Frequency Analysis for EM analysis, it is necessary to verify if the set of EM traces

measured from the PDA leaks any information about the master key of the AES

encryption algorithm. Therefore, the first analysis done on the EM traces is the previously

researched DEMA attack.

In this DEMA attack, the EM traces are partitioned into 2 groups according to the

corresponding plaintext and key guess. The value of the least significant bit (LSB) of the

8-bit S-Box output is computed in the first round of AES. Refer to Figure 4 for the

illustration of trace partitioning. Figure 34 below shows the differential signal for the

correct partition with the key value equals to 0x5C. Figure 34 below shows the

differential signal for the wrong partition with the key value equals to 0xE6. The

differential time signal is computed by subtracting the average of traces in group 0 from

Chapter 4 – Experiments

63

the average of traces in group 1. As shown in Figure 34 and Figure 35, no significant

spike is observed from the differential time signal for both key guesses. Misaligned traces

cause large spurious peaks in a differential trace. When spikes are slightly out of

alignment in time, they will cancel out rather than reinforced when averaging.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10-3

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Time (seconds)

In
du

ce
d

V
ol

ta
ge

 (u
V

)

Difference of Means
2*STD
-2*STD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10-3

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Time (seconds)

In
du

ce
d

V
ol

ta
ge

 (u
V

)

Difference of Means
2*STD
-2*STD

Figure 34: DEMA on PDA (correct key=0x5C) Figure 35: DEMA on PDA (wrong
key=0xE6)

Figure 36 shows the all keys search for 256 possible key values. The analysis

computes and compares the absolute value of the differential time signal and record the

maximum peak outside 2*STD_R for all 256 possible key values of the S-Box. Refer to

Section 3.5.1 for details of the DEMA methodology. As illustrated in Figure 36, the key

value 0x5C does not have the biggest spike among all keys. Hence, the correct key is not

recovered. DEMA is not effective when misalignment of traces is severe during

experiments.

Chapter 4 – Experiments

64

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

00 0F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1 F0 FF
8-Bit Key Values

In
du

ce
d

Vo
lta

ge
 (u

V)

correct key = 0x5C

Figure 36: All Keys Search of DEMA on PDA

Since the previously researched DEMA is unsuccessful in extracting the correct

key of the AES encryption, the next section investigates the effectiveness of analysis in

frequency domain under severe experimental conditions.

4.4.1.3 Differential EM Frequency Analysis (DEMFA)

Knowing that DEMA is incapable of determining the Rijndael encryption key using the

EM traces from the PDA, the purpose of this analysis is to determine whether the new

DEMFA attack could successfully recover the master key. In this analysis, the EM traces

are partitioned into 2 groups according to the corresponding plaintext and key guess

similar to the DEMA attack. The value of the least significant bit (LSB) of the 8-bit S-

Box output is computed in the first round of AES. Refer to Figure 4 for the illustration of

trace partitioning. In this attack, one extra step is taken in this analysis, the raw time

domain EM signal is transformed to the frequency domain. The power spectral density of

each EM trace is computed in this step. Refer to Section 3.3 for details of the DEMFA

methodology.

Figure 37 below shows the differential PSD signal for the correct partition with

the key value equals to 0x5C. Note that this is a differential frequency signal. Unlike

DEMA, the differential frequency signal is computed by subtracting the averaged power

spectral density for traces in group 0 from the averaged power spectral density for traces

Chapter 4 – Experiments

65

in group 1. The y-axis represents the PSD magnitude and the x-axis represents the

frequency. The differential signal in Figure 37 has significantly higher amount of area

outside the ±2*STD_R region. Please refer to section 3.2 for calculation of the STD_R

region. The differential signal in Figure 38, on the other hand, has significantly less

spikes outside the standard deviation region for an incorrect key guess of 0xE6.

10 10.5 11 11.5 12 12.5
-0.01

-0.005

0

0.005

0.01

0.015

Frequency (MHz)

P
S

D
 (u

V
2 /M

H
z)

Differential PSD
2*STD
-2*STD

10 10.5 11 11.5 12 12.5
-0.01

-0.005

0

0.005

0.01

0.015

Frequency (MHz)

P
S

D
 (u

V
2 /M

H
z)

Differential PSD
2*STD
-2*STD

Figure 37: DEMFA on PDA (correct key=0x5C) Figure 38: DEMFA on PDA (wrong
key=0xE6)

Figure 39 shows the all keys search for 256 possible key values. The analysis

computes and compares the total area of PSD spikes that are beyond the ±2*STD_R

region for all 256 possible key values. The AES S-Box being attacked is used in the 8

most significant bit (MSB) of the 128-bit key. As shown in Figure 39, the key value 0x5C

has highest amount of total area of PSD spikes beyond the 2 times standard deviation

threshold region among all keys. Hence, the correct key is successfully recovered from

the DEMFA.

Chapter 4 – Experiments

66

0

0.05

0.1

0.15

0.2

0.25

0.3

00 0F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1 F0 FF
8-bit Key Values

PS
D

 (u
V^

2/
M

H
z) correct key = 0x5C

Figure 39: All Keys Search of DEMFA on PDA

The experimental results from above justify that the differential EM frequency

analysis is more effective than the DEMA attack when the problem of misalignment of

traces and noise is severe.

Figure 40 illustrates the results of attacking a different S-Box in the AES

algorithm. The AES S-Box being attacked is used in the 8 least significant bit (LSB) of

the 128-bit key. The correct key for this last S-Box is 0x3C. The correct key is

successfully determined by the DEMFA. It is shown that the DEMFA attack can extract

the complete 128-bit secret key by attacking all 16 S-Boxes one at a time.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

00 0F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1 F0 FF
8-Bit Key Values

PS
D

 (u
V^

2/
M

H
z)

correct key = 0x3C

Figure 40: All Keys Search of DEMFA on PDA (Attacking Last S-Box)

Chapter 4 – Experiments

67

4.4.1.4 Differential EM Spectrogram Analysis (DEMSA)

This thesis performs the differential EM spectrogram analysis (DEMSA) proposed by

Gebotys et al. in [15] to PDA’s running the Rijndael encryption algorithm. The purpose

of this test is to investigate whether the spectrogram analysis is effective in extracting the

AES encryption secret key. Recall from Section 3.5.2 that Spectrogram is a time-

dependent frequency analysis. It consists of both time and frequency information, and

therefore, has the advantage to pinpoint the time where there is a significant correlation

between EM emanation and data values being manipulated.

Figure 41 below shows the differential spectrogram signal for the correct partition

with the key value equals to 0x5C. Unlike DEMA and DEMFA, the differential

spectrogram signal is computed by subtracting the averaged spectrogram for traces in

group 0 from the averaged spectrogram for traces in group 1. The y-axis now represents

the spectrogram magnitude and the x-axis represents the time. The window size of

creating the spectrogram is 0.1 ms as illustrated in both Figure 41 and Figure 42. In

between the 0.1 ms time intervals is the plot of the differential signal over a range of

frequencies. The differential spectrogram signal in Figure 41 has significantly higher

amount of area outside the ±2*STD_R region in blue. Please refer to section 3.2 for

calculation of the STD_R region. Note the significant difference between times 0.7 ms to

0.9 ms in Figure 41. The differential signal in Figure 42, on the other hand, has

significantly less spikes outside the standard deviation region for an incorrect key guess

of 0xE6.

Chapter 4 – Experiments

68

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (ms)

In
du

ce
d

V
ol

ta
ge

 (u
V

)
Differential Spectrogram
2*STD
-2*STD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (ms)

In
du

ce
d

V
ol

ta
ge

 (u
V

)

Differential Spectrogram
2*STD
-2*STD

Figure 41: DEMSA on PDA (correct key=0x5C) Figure 42: DEMSA on PDA (wrong
key=0x37)

Figure 43 shows the all keys search of 256 possible S-Box key values. The

analysis computes and compares the total area of spectrogram spikes that are beyond the

±2*STD_R region for all 256 possible key values of the AES S-Box being attacked. As

demonstrated in Figure 43, the key value 0x5C has the highest amount of total area of

PSD spikes beyond the 2 times standard deviation threshold region among all keys.

Hence, the correct key is successfully recovered using the differential EM spectrogram

analysis.

0
2
4
6
8

10
12
14
16
18
20

00 0F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1 F0 FF
8-bit Key Values

In
du

ce
d

Vo
lta

ge
 (u

V)

correct key = 0x5C

Figure 43: All Keys Search of DEMSA on PDA

Chapter 4 – Experiments

69

4.4.2 EM Analysis on AES with Countermeasure

Without countermeasure implemented, DEMA already fails because of trace

misalignment. Since DEMFA and DEMSA can both extract the correct key, the original

AES encryption algorithm is modified to implement a countermeasure called Split Mask.

For implementation details of the Split Mask countermeasure, refer to [9]. The purpose of

this experiment is to investigate whether DEMFA and DEMSA can defect the masking

countermeasure.

4.4.2.1 Differential EM Frequency Analysis (DEMFA)

First, the frequency analysis is performed on the AES implementation with Split Mask

countermeasure. Figure 44 shows the all keys search of 256 possible key values. The

analysis computes and compares the total area of PSD spikes that are beyond the

±2*STD_R region for all 256 possible key values of the AES S-Box being attacked. As

shown in Figure 44, the correct key value 0x5C does not the highest amount of total area

of PSD spikes beyond the 2 times standard deviation threshold region among all keys.

The correct key is not extracted using DEMFA. Hence, the Differential Frequency

Analysis is not able to defect the Split Mask countermeasure.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

00 0F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1 F0 FF
8-bit Key Values

PS
D

 (u
V^

2/
M

H
z)

correct key = 0x5C

Figure 44: All Keys Search of DEMFA on PDA for AES with Countermeasure

4.4.2.2 Differential EM Spectrogram Analysis (DEMSA)

Next, the spectrogram analysis is performed on the AES implementation with Split Mask

countermeasure. Figure 45 shows the all keys search of 256 possible key values. The

Chapter 4 – Experiments

70

analysis computes and compares the total area of spectrogram spikes that are beyond the

±2*STD_R region for all 256 possible key values of the AES S-Box being attacked. As

indicated in Figure 45, the key value 0x5C does not have the highest amount of total area

of PSD spikes beyond the 2 times standard deviation threshold region among all keys.

Hence, the correct key also cannot be extracted using DEMSA when the Split Mask

countermeasure is implemented.

0

0.5

1

1.5

2

2.5

00 0F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1 F0 FF
8-bit Key Values

In
du

ce
d

Vo
lta

ge
 (u

V)

correct key = 0x5C

Figure 45: All Keys Search of DEMSA on PDA for AES with Countermeasure

4.4.2.3 Waddle’s FFT 2DPA Attack

It is predicted that both frequency and spectrogram analysis cannot defect the masking

countermeasure. Recall that the aim of these 2 attacks is to resolve trace misalignment

encountered in first-order analysis. In fact, to overcome the masking countermeasure, a

higher-order analysis is required. Waddle’s FFT 2DPA attack is a second-order

differential power analysis that is proposed to defeat masking countermeasure. Refer to

Section 3.5.3 for details about this attack. The purpose of this test is to present

experimental results of this attack.

Figure 46 shows the all keys search for 256 possible values. The differential time

signal is computed by subtracting the average of autocorrelation of traces in group 0 from

the average of autocorrelation of traces in group 1. The analysis computes and compares

the total area of time spikes that are beyond the ±2*STD_R region for all 256 possible

key values of the AES S-Box being attacked. As shown in Figure 46, the key value 0x5C

Chapter 4 – Experiments

71

does not have the highest amount of total area of PSD spikes beyond the 2 times standard

deviation threshold region among all keys. Hence, the correct key cannot be extracted

using Waddle’s FFT 2DPA analysis when the Split Mask countermeasure is implemented.

0

0.1

0.2

0.3

0.4

0.5

0.6

00 0F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1 F0 FF
8-bit key values

In
du

ce
d

Vo
lta

ge
 (u

V)

correct key = 0x5C

Figure 46: All Keys Search of FFT2DEMA on PDA for AES with Countermeasure

One possible reason of the failure of this attack is that the process of correlation

amplifies the noise, hence increasing standard deviation and requiring more samples to

reliably differentiate distributions. Due to measurement equipment limitations, the attack

is not feasible in this thesis. The author also suggested that such attack will likely to work

only if the traces are fairly short and the correlated bit influence fairly large. However,

this is not the case in this experiment.

In summary, the experimental results from the PDA show that the EM emanation

also leak key information about the Rijndael encryption algorithm. It is confirmed

experimentally that DFA is more effective than previously researched DEMA when

traces are misaligned in measurements.

Chapter 4 – Experiments

72

4.5 Summary of Experimental Results

Table 3 and Table 4 below summarize all the experimental results presented in this

chapter. Results have shown that the proposed differential frequency attack can extract

secret key under severe trace misalignment conditions. In addition, the frequency attack

is shown experimentally to be able to defect the desynchronization countermeasure.

Table 3: Summary of Experimental Results on ARM

Experiments on ARM Normal AES AES with Random Time
Shifts Countermeasure

DEMA Correct key extracted Correct key NOT extracted
DEMFA Correct key extracted Correct key extracted
DPA Correct key extracted Correct key NOT extracted
DPFA Correct key extracted Correct key extracted

Table 4: Summary of Experimental Results on PDA

Experiments on PDA Normal AES AES with Split Mask
Countermeasure

DEMA Correct key NOT extracted Correct key NOT extracted
DEMFA Correct key extracted Correct key NOT extracted
DEMSA Correct key extracted Correct key NOT extracted
FFT 2DEMA Correct key NOT extracted Correct key NOT extracted

To determine the signal quality, Table 5 summarizes the signal-to-noise ratio

(SNR) of all data measured for this thesis. The SNR is computed as follows: SNR =

10*log10(mean/standard deviation) (dB). The mean describes what is being measured,

while the standard deviation represents noise the other interference. The standard

deviation is not important in itself, but only in comparison to the mean. Therefore, it is

valid to compare the SNR of EM and power data since the ratio of mean and standard

deviation is unit-less.

Chapter 4 – Experiments

73

As indicated in Table 5, the power data obtained from the ARM evaluation board

has a higher SNR than the EM data obtained from the ARM evaluation board. Note that

the higher the SNR, the better the signal quality. Moreover, the EM data obtained from

the PDA has is slightly noisier than that from the ARM evaluation board since the PDA

has a lower SNR.

Table 5: Comparison of Signal-to-Noise Ratio for All Measurements

Measurements Normal AES AES with Random Time
Shifts Countermeasure

EM data from ARM 5.2525 dB 5.2671 dB
Power data from ARM 7.1339 dB 7.0647 dB
EM data from PDA 4.4677 dB 4.8179 dB

Chapter 5 – Discussion

74

5 Discussion

This chapter discusses the experimental results, compares the DFA attack with previously

researched side channel attacks, discusses the effectiveness of the DFA attack, and

presents work to be done in the future.

5.1 Comparison of Experimental Results to Previous Research

5.1.1 Comparison to Previous Research on SPA and DPA

In [1], [7], and [10], the security of the newly developed encryption standard, AES,

against power analysis is never put in practice. No real power measurements were

presented in all these literatures. This thesis investigates the effectiveness of differential

power analysis (DPA) of AES on the ARM Integrator/C7TDMI core module with a 32-

bit processor. The secret key of the Rijndael encryption algorithm is successfully

retrieved from the experiments. Experimental results indicate that like DES, AES is also

vulnerable to DPA.

5.1.2 Comparison to Previous Research on SEMA and DEMA

Regarding EM measurements, a commercial EM probe is used for capturing EM signals

from the ARM Integrator/C7TDMI core module and PDA in this thesis. By trial and error,

it is observed that the magnetic probe with a shape of a 1-cm loop gives the best EM

signal quality when the probe is placed in contact with the processor of the ARM

Integrator/C7TDMI core module and PDA. No decapsulation is done to the processor

chip. Comparing to previous research, different approaches were used to measure EM

emanations. Some researchers built hand-made EM probes with different materials,

shapes and sizes. EM probes were also located at a different distance from the chip in

their experiments. In [5], Quisquater et al. used a simple flat coil so the variations of the

electromagnetic field induce a current at the bounds. The sensor is placed under the smart

card in the very close field. In [11], Gandolfi et al. used tiny hand-made probes, solenoids

made of a coiled copper wire of outer diameters varying between 150 and 500 microns,

for their EM measurements. They also stressed the importance to perform measurement

as closely as possible to the chip by decapsulating the chip. Carlier et al. in [12] used

Chapter 5 – Discussion

75

solenoid wires of copper consisting of a dozen of spires with a diameter of approximately

1 mm for their EM measurements. They placed the probe as close as possible to the

FPGA to increase the magnetic flux collected by the probe. In [3], all EM emanations are

measured either in the near field or in the far field away from the smart card unlike this

thesis, [5], [11], and [12].

Regarding experimental results, this thesis shows a SEMA trace where one can

see distinctively 12 rounds of AES 192-bit encryption computation. DEMA attacks of

AES are also performed on the ARM Integrator/C7TDMI core module and on the PDA.

Results indicate that DEMA is able to extract the secret AES key from the ARM

Integrator/C7TDMI core module. However, DEMA fails on the PDA because of trace

misalignment. The thesis presents conclusive EM analysis results from the ARM

Integrator/C7TDMI core module and PDA both with 32-bit processors. Comparing to

previous research, no real experiments of SEMA or DEMA were put in practice on 32-bit

processors and PDA’s. Gandolfi et al. only reported DEMA results of DES from an 8-bit

CMOS microcontroller in [11]. The authors also compared DEMA results with DPA

results in their paper. According to their experimental findings, although more noisy, EM

measurements yield better differentials than power signals. DEMA’s signal-to-noise ratio

was higher than that of DPA. This thesis also compares the characteristics of EM

emanation with power consumption using the ARM Integrator/C7TDMI core module.

Unlike [11], results from the ARM evaluation board show that EM curves appear to be

noisier than power curves. The signal-to-noise ratio of power traces is higher than that of

EM traces. In [3], Agrawal et al. had successfully demonstrated DEMA attacks of DES

on smart cards. Unlike this thesis, [5], [11], and [12], the raw EM signals were AM

demodulated at different intermediate carrier frequencies (harmonics of the clock

frequency). This thesis also attempts Agrawal et al.’s AM demodulation approach on

DEMA attacks as researched in [3]. However, DEMA with AM demodulation is not

feasible on PDA experiments. Therefore, no experimental results on AM demodulation

are reported. One reason of failing is that AM demodulation only works best at higher

frequencies, whereas experiments done in this thesis are limited in lower frequencies. To

perform AM demodulation, the sampling frequency Fs must satisfy Fs > 2 * Fc + BW,

Chapter 5 – Discussion

76

where Fc is the carrier frequency and BW is the bandwidth of the modulated signal.

Because of limited scope memory as already discussed in Section 4.1.3, the sampling

frequency (Fs) of the signals captured from the PDA is much lower than the fundamental

clock frequency (Fc) of the PDA. Since the condition of Fs > 2 * Fc + BW cannot be

satisfied, it is thus not possible to perform the attack proposed in [3].

5.1.3 New Findings of Thesis

Past research focuses primarily on the security of smart cards, 8-bit processors, and

FPGA’s. No research has been done to study the threat of side channel attacks on 32-bit

processors and PDA’s. Most experimental results presented so far are attacks on DES

implementation; AES implementation is never studied. Comparing to previous research,

this thesis is the first to report conclusive side channel attack results of AES

implementation on an ARM Integrator/C7TDMI core module and a PDA.

In addition, no methodology has been proposed to overcome these experimental

issues in the past. Comparing to previous research, this thesis is the first one to address

experimental issues encountered in PDA experiments where EM traces measured are

temporally misaligned. This thesis proposed a new side channel attack called the

Differential Frequency Analysis (DFA), which does not require perfect alignment of EM

traces. Results from the ARM Integrator/C7TDMI core module also support the theory of

DFA. It is confirmed experimentally that spikes appeared in the differential signal in time

domain also appear in frequency domain, since any changes in the time domain signals

would induce changes in the frequency domain signals. Hence, the correct key can be

determined by examining the differential signal in the frequency domain.

It is also demonstrated experimentally that the new frequency-based attack can be

applied to both power analysis and EM analysis. Experimental results from the ARM

core module indicate that the new DFA attack is as effective as DPA and DEMA to

extract the secret key of the Rijndael encryption algorithm when no countermeasure is

implemented. For PDA experiments, DEMA fails when temporal misalignment of traces

is severe. The DFA is shown to be effective to overcome this experimental issue; it is

Chapter 5 – Discussion

77

able to reveal the secret key of the AES encryption. Therefore, it is shown that DFA has

the advantage over DEMA since it can be applied under trace misalignment conditions.

In addition, results indicate that performing differential analysis in the frequency

domain can defeat the desynchronization countermeasure against DPA and DEMA.

Results show that the proposed first order DFA attack can efficiently overcome

countermeasures that randomly insert delays without the need of launching a higher-order

analysis. Thus, the proposed frequency-based attack is better then DPA and DEMA when

the desynchronization countermeasure is implemented. However, when the Split Mask

countermeasure is implemented to AES, DFA fails because DFA is a first order attack, it

only aims to resolve trace misalignment problem. Therefore, higher order attack is

required to defect the Split Mask countermeasure.

5.1.4 Comparison to Previous Research on High Order Attacks

Waddle et al. proposed an efficient second-order power analysis, FFT 2DPA, in [13].

Unlike Waddle’s high order attack which uses Fast Fourier Transform to overcome the

masking countermeasure as a higher order differential analysis, the new DFA attack

proposed in this thesis uses FFT to eliminate misalignment problem in traces encountered

in experimental measurements. The analysis presented by Waddle et al. is still performed

in the time domain, whereas the Differential Frequency Analysis is performed in the

frequency domain. In addition, DFA does not require computing the inverse FFT to

transform the signal back to the time domain. Therefore, it requires less computation time.

In addition, the attack proposed in this thesis use a threshold signal of multiple standard

deviations of means than a constant threshold value to better characterize the significance

of spikes found in the differential signal.

Once again, no real measurements are presented in [13]. This thesis is the first to

put FFT 2DPA in practice. Results indicate that the secret key cannot be extracted from

the AES implementation using Waddle’s FFT 2DPA analysis when the Split Mask

countermeasure is implemented. Experimental results indicate that the difference of

means of the autocorrelation is very noisy, no clear spikes are present. One possible

Chapter 5 – Discussion

78

reason of the failure of this attack is that the process of correlation amplifies the noise,

hence increasing standard deviation and requiring more samples to reliably differentiate

the autocorrelation distributions. Due to measurement equipment limitations, the attack is

not feasible in this thesis. The author also suggested that such attack will likely to work

only if the traces are fairly short and the correlated bit influence fairly large. However,

this is not the case in the experiment in this thesis. In practice, FFT 2DPA suffers from

too much noise amplification to be generally effective.

5.1.5 Comparison to Previous Research on Frequency Analysis

Differential spectrogram analysis (DSA) is a time-dependent frequency-based attack

proposed by Gebotys et al. in [15]. Comparing to DFA, DSA has the advantage of being

capable to locate the time segment where the differential time signal occurs. However,

DSA is computationally longer than DFA. Unlike DSA, the new attack proposed in this

thesis computes the power spectral density of each trace instead of the spectrogram. DFA

is best in practice when the adversary already know about where the attack point occurs

in time. Spectrogram comes in handy when the attacker has no idea where the differential

occurs. Both DFA and DSA can extract the secret key when DEMA fails.

Regarding experiments on PDA, both DFA and DSA can overcome trace

misalignment problem and extract the secret key effectively. However, DFA and DSA

both fail when the Split Mask countermeasure is implemented to AES.

5.2 Advantages

There are 4 major advantages of using frequency domain signals in differential analysis.

The main advantage of DFA is its capability of breaking a cryptosystem under severe

temporal misalignment of traces. Before the DFA is proposed, one would need to first

align traces and then perform normal differential time analysis such as DEMA and DPA.

Some signal processing techniques such as cross-correlation might be able to align these

temporally shifted traces. However, misalignment problems are not constant within each

acquisition. Normally, there are more than a thousand traces in each acquisition. In order

to compute the cross-correlation of 2 misaligned traces, one has to find out the shifts, n,

Chapter 5 – Discussion

79

between these 2 traces. Hence, computing the cross-correlation for thousands of traces is

difficult and computationally time consuming. With DFA, attackers are not required to

perform the extra step to align every single temporally shifted trace. The DFA attack only

requires a simple pre-processing stage to transform time signals to the frequency domain.

Secondly, the frequency domain signals are better than time domain signals for

differential analysis. Frequency analysis may reveal loops and other repeating structures

in a signal, which is not possible with time domain analysis. More importantly, frequency

signals are less sensitive to random jitters and delays than time signals. Also, DFA is

applicable to both power consumption and EM emanation.

Thirdly, DFA is proved to be capable of defecting desynchronization

countermeasures that randomly inserts time shifts.

Lastly, our results showed that the use of DFA on the PDA has the advantage of

reducing the key search space, unlike brute-force attacks. A brute-force attack is

impossible for an AES 128-bit key since there are 2128 possible key searches. On the other

hand, the Differential Frequency Analysis is only performed on each of the 8-bit S-Boxes.

For AES 128-bit, there are 16 S-Boxes in total. Therefore, the key search space is

reduced to 16 * 256 = 4096.

5.3 Disadvantages

There are 2 major disadvantages of using frequency domain signals in differential

analysis. A major flaw in the DFA attack is the fact that it reveals no information of when

data-dependant operations occur in time unlike normal DEMA and DPA. However, it is

important to note that the main interest of an attacker is the secret key. Therefore, DFA is

still an attractive technique for attacking mobile devices.

Secondly, there is a computation overhead of transforming time domain signals to

frequency domain. The total runtime of DFA attacking an 8-bit S-Box is

θ(nmlogm+256nm). As for the runtime of normal DEMA or DPA attack, there is no need

Chapter 5 – Discussion

80

of preprocessing. The total runtime is θ(256nm). Although DFA has a slightly higher

computational overhead, but it is worthwhile for its effectiveness of breaking the

conventional symmetric key algorithm under severe trace misalignment experimental

conditions.

5.4 Limitations

Differential Frequency Analysis (DFA) has fewer limitations than DEMA and DPA since

it does not require perfect trace alignment to retrieve the secret key of AES. DFA is

general and can be applied to embedded systems other than the PDA and to power traces

as well as EM traces. The proposed DFA attack is not limited to AES. It could be used in

other symmetric key algorithms such as DES, CAST 128, etc., where attacks at the output

of S-Box are applicable.

All experiments presented in this thesis are subject to certain limitations. One of

the major limitations is the number of traces acquired. Being a high-level programming

language, Java is much slower than the assembly language. Since the number of traces

measured is limited by the scope memory as described in Section 4.1.3, it is not possible

to capture a large number of traces from the PDA unlike the ARM evaluation board. In

fact, the AES encryption program written in assembly is at least hundred times faster than

the AES Java program for the PDA. As a result, having a longer frame would sacrifice

the number of traces acquired. In addition, other portable devices, unlike the PDA under

test in this thesis, would shut down automatically after running the encryption over a

certain number of times for security reason. Therefore, the number of traces acquired for

DFA may be restricted by the automatic shutdown of these embedded systems.

In addition, the fixed scope memory size also restricts the frequency span of the

signal captured. A longer frame not only sacrifices the number of traces acquired as

discussed earlier but also the sampling rate. Recall the frequency span is half of the

sampling rate. As a result, all the measured data from the PDA have a low frequency span.

AM demodulation is not feasible to raw EM data obtained from the PDA.

Chapter 5 – Discussion

81

 Another limitation of DFA is that it requires the attacker to have knowledge about

where the data dependency occurs. DFA works at best when the adversary can pinpoint

the time where there is a significant correlation between EM emanation and data values

being manipulated. Moreover, the attacker is required to have knowledge and control of

the input plaintexts for the AES encryption in order to partition traces into 2 groupings.

5.5 Future Work

There are several experiments worth undertaking in the future. The first experiment is to

investigate the effectiveness of the Differential Frequency Analysis for higher-order

attacks. Due to the time constraint and some limitations discussed in this chapter, this

thesis only uses the frequency analysis in first order attacks. The extension of DFA to

higher order analysis is definitely the subject of future work.

The proposed DFA attack is not limited to its application on symmetric key

algorithms. It could also be applied to other cryptographic algorithms such as public key

algorithms. It is worth to experiment DFA attack on the Elliptic Curve Cryptography

(ECC) which is widely implemented on embedded systems for its efficient computation.

Knowing that DFA is such a powerful technique, it is also of interest to investigate

countermeasures for this frequency-based attack in order to better protect wireless

embedded systems from adversaries in future research.

Chapter 6 – Conclusion

82

6 Conclusion

In summary, this thesis is the first to investigate the threat of EM analysis on PDA’s. This

thesis also presents for the first time EM analysis measurement results of AES

implementation on a PDA.

This thesis first compares the characteristics of EM emanation with power

consumption using the ARM Integrator/C7TDMI core module. Results show that EM

curves appear to be noisier than power curves because the signal-to-noise ratio of power

traces is higher than that of EM traces. For a normal AES implementation on the ARM

Integrator/C7TDMI core module, both DEMA and DPA can extract the secret key easily.

However, when the desynchronization countermeasure is implemented on AES, DEMA

and DPA fail. The proposed Differential Frequency Analysis (DFA) is shown to be able

to defect such countermeasure that inserts random delay. It is also illustrated in this thesis

that the Differential Frequency Analysis can be applied to both power and EM data. It is

also confirmed experimentally that spikes appeared in the differential signal in time

domain also appear in frequency domain, since any changes in the time domain signals

would induce changes in the frequency domain signals.

There is a difficulty of measuring power consumption from the PDA under test.

Therefore, EM emanation is the preferred source for differential analysis in this thesis. It

is shown that one can determine the key length used in a Rijndael encryption by simply

observing a single EM trace in the attack known as the simple EM analysis (SEMA).

In addition, this thesis is the first to address the severe issues of trace

misalignment on PDA experiments. This work proposes a new side channel attack called

the Differential Frequency Analysis, which does not require perfect alignment of EM

traces, thus supporting attacks on wireless embedded systems. DEMA fail when traces

are misaligned. On the other hand, DFA is shown experimentally that it can overcome

this problem and extract the secret key successfully.

Chapter 6 – Conclusion

83

Other than the new DFA attack, this thesis also performs other side channel

attacks proposed in previous research. Results from differential spectrogram analysis

(DSA) and Waddle’s FFT 2DPA attack, and are also presented in this work. DSA is as

effective as DFA in retrieving the secret key of a normal Rijndael implementation.

Furthermore, this thesis studies the effectiveness of 2 previously researched

countermeasures for the Rijndael encryption implementation: the desynchronization

countermeasure and the Split Mask countermeasure. The proposed Differential

Frequency Analysis (DFA) is shown to be able to defect countermeasure that inserts

random delay. However, DFA and DSA fail when the Split Mask countermeasure is

implemented to AES on the PDA. Waddle’s FFT 2DPA attack is also performed on the

Split Mask countermeasure. However, this attack cannot extract the secret key as it has

claimed by the authors.

In conclusion, this thesis makes progress in side channel attacks and is important

for future wireless embedded systems, which will increasingly demand higher levels of

data security measures. This work can help users, developers, and product designers to

gain a deeper understanding of the side channel security risks that these portable devices

introduce.

84

References
[1] Paul Kocher, Joshua Jaffe, and Benjamin Jun, “Differential Power Analysis,” Advances

in Cryptography – CRYPTO’99, Lecture Notes in Computer Science vol. 1666, pp. 388-

397, Springer-Verlag 1999

 [2] National Institute of Standards and Technology, “FIPS 197 Advanced Encryption

Standard,” Available at http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf, 2001

[3] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi, “The EM

Side-Channel(s): Attacks and Assessment Methodologies,” Available at

http://www.research.ibm.com/intsec/emf.html, 2002

[4] Thomas S. Messerges, “Using Second-Order Power Analysis to Attack DPA Resistant

Software,” CHES 2000, Lecture Notes in Computer Science vol. 1965, pp.238-251,

Springer-Verlag 2000

[5] Jean-Jacques Quisquater and David Samyde, “Electromagnetic analysis (EMA):

measures and countermeasures for smart cards,” Lectures Notes in Computer Science vol.

2140, pp. 200-210, 2001

[6] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao and Pankaj Rohtagi, “Towards Sound

Approaches to Counteract Power Analysis Attacks,” Advances in Cryptography –

CRYPTO’99, Lecture Notes in Computer Science vol. 1666, pp. 398-412, Springer-Verlag

1999

[7] Louis Goubin and Jacques Patarin, “DES and Differential Power Analysis – The

Duplication Method,” CHES 1999, Lecture Notes in Computer Science vol. 1717, pp.

158-172, Springer-Verlag 1999

[8] Kouichi Itoh, Masahiko Takenaka, and Naoya Torii, “DPA Countermeasure Based on the

“Masking Method”,” Lecture Notes in Computer Science 2288, pp.4440-456, Springer-

Verlag 2002

[9] C.H. Gebotys, C.C. Tiu, and X. Chen, “A Countermeasure for EM Attack of a Wireless

PDA,” To appear in Proceedings of IEEE International Conference on Information

Technology Coding and Computing, session number 90, 2005

[10] Jovan Dj. Golić, “Multiplicative Masking and Power Analysis of AES,” Lecture Notes in

Computer Science vol. 2523, pp.198-212, Springer-Verlag 2003

[11] Karine Gandolfi, Christophe Mourtel and Francis Olivier, “Electromagnetic analysis:

Concrete results,” Lecture Notes in Computer Science vol. 2162, pp. 251-261, Springer-

Verlag 2001

85

[12] Vincent Carlier, Hervé Chabanne, Emmanuelle Dottax, and Hervé Pelletier,

“Electromagnetic Side-Channels of an FPGA Implementation of AES,” Available at

http://eprint.iacr.org/2004/145.pdf, 2004

[13] J.Waddle, and D.Wagner “Towards Efficient Second-Order Power Analysis,” CHES

2004, Lecture Notes in Computer Science vol. 3156, pp. 1-15, Springer-Verlag 2004

[14] Eric Kohlbrenner, Dana Morris, Brett Morris, “The Java Virtual Machine Model,”

Available at http://cne.gmu.edu/itcore/virtualmachine/jvm.htm, 1999

[15] C.H. Gebotys, C.C. Tiu, and S. Ho, “EM Analysis of Rijndael and ECC on a Wireless

Java-based PDA,” Submitted to CHES 2005, 2005

[16] ARM Limited, “ARM7TDMI (Rev 4) Technical Reference Manual,” Available at

http://www.arm.com/documentation/ARMProcessor_Cores/index.html, 2001

[17] ARM Limited, “Integer/CM7TDMI User Guide,” Available at

http://www.arm.com/documentation/Boards_and_Firmware/index.html, 2001

[18] Electro-Metrics Inc., “Broadband Amplifier Model EM-6992 Instruction Manual,”

Available at http://www.electro-metrics.com, 2002

[19] Electro-Metrics Inc., “Near Field Probe Set Broadband Response Model EM-6992

Instruction Manual,” Available at http://www.electro-metrics.com, 2002

[20] Dr.Brian Gladman, “A Specification for Rijndael, the AES Algorithm,” Available at

fp.gladman.plus.com/cryptography_technology/rijndael/aes.spec.311.pdf, 2003

[21] J.Daemen, V.Rijmen “Resistance against Implementation Attacks: A comparative study

of the AES proposals,” Available at

http://csrc.nist.gov/CryptoToolkit/aes/round1/conf2/papers/daemen.pdf, Rome, 1999

[22] Tektronix, “TDS7254 Digital Phosphor Oscilloscope User Manual,” Available at http://
http://www.tek.com/site/mn/mnfinder_detail/1,1096,,00.html?id=54&pn=071701002,

2003

[23] Tektronix, “TCP202 DC/AC Inductive Current Probe Instruction Manual,” Available at

http://www.tek.com/site/mn/mnfinder_detail/1,1096,,00.html?id=3751&pn=070954202,

2004

[24] National Institute of Standards and Technology, “FIPS 46-3 Data Encryption Standard

(DES),” Available at http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf, 1999

[25] S. Smith, “The Scientist and Engineer’s Guide to Digital Signal Processing (online

version) – Chapter 8: The Discrete Fourier Transform”, Available at

http://www.dspguide.com/ch8.htm, California Technical Publishing 1997

86

[26] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, “Numerical Recipes in C:

The Art of Scientific Computing Second Edition (online version),” pp. 549-550,

Available at http://www.library.cornell.edu/nr/bookcpdf/c13-4.pdf, Cambridge University

Press1992

[27] M. Akkar, R. Bevan, P. Dischamp, D. Moyart, “Power analysis, What is Now Possible,”

Lecture Notes in Computer Science vol. 1976, pp. 489-502, Springer-Verlag 2000

[28] A. Raghunathan, N. Potlapally, S. Ravi, “Securing Wireless Data: System architecture

challenges,” Proceedings of ISSS 2002, pp.195-200, 2002

[29] P. Kocher, R. Lee, G. McGraw, A. Raghunathan, S. Ravi, “Security as a New Dimension

in Embedded System Design, “ Proceedings of DAC 2004, Available at

http://videos.dac.com/41st/papers/46_1.pdf, 2004

[30] S. Chari, C. Jutla, J.R. Rao, P. Rohatgi, “A Cautionary Note Regarding Evaluation of

AES Candidates on Smart-Cards,” Available at

http://csrc.nist.gov/CryptoToolkit/aes/round1/conf2/papers/chari.pdf, Rome, 1999

[31] T. Lash, “A Study of Power Analysis and the Advanced Encryption Standard,” MS

Scholarly Paper, George Mason University, Feb. 2002

[32] J.S. Coron, L. Goubin, “On Boolean and Arithmetic Masking Against Differential Power

Analysis,” CHES 2000, Lecture Notes in Computer Science vol. 1965, pp. 231, Springer-

Verlag 2000

[33] Kingpin, Mudge, “Security Analysis of the Palm Operating System and its Weaknesses

Against Malicious Code Threats,” Available at

http://downloads.securityfocus.com/library/security_analysis_palm_os.pdf, Washington,

2001

87

Appendix

Appendix 1 – MATLAB program of DFA attack

% pdaDFA -- Differential Frequency Analysis for PDA
% datFileStr = data file name from scope (string)
% hdrFileStr = header file name from scope(string)

function pdaDFA(datFileStr,hdrFileStr)

raw_samples = load(datFileStr);
res = dlmread(hdrFileStr);

record_length=res(1);
frame_count=res(6)/2;
tot_frame=res(6);
hdr_sample_freq=1/res(2);
hdr_sample_period=res(2);
f=0:hdr_sample_freq/1e6/record_length:hdr_sample_freq/1e6-
hdr_sample_freq/1e6/record_length;
t=0:hdr_sample_period:hdr_sample_period*record_length-hdr_sample_period;

samples = zeros(frame_count*2, record_length);
for k = 0:(frame_count*2-1)
 samples(k+1,:) = (raw_samples(k*record_length+1:(k+1)*record_length))';
end

samples = samples';
clear raw_samples;
save('samples.mat');

sumPeaks=zeros(256, 1);
save sumPeaks.mat datFileStr sumPeaks;
clear;

for k=0:255
 keyStr = num2str(dec2hex(k, 2));
 save('keyStr');
 display(keyStr);

clear;
load('keyStr');
load('samples.mat');

if(size(samples,2)==record_length)
 display('need transpose');
 samples = samples';
end

javaMethod('pda1SBoxSplitPt', 'splitPt', hex2dec(keyStr), tot_frame);

% Set 0
index0 = load(strcat(keyStr, '_pda_index0.txt'));

88

array0 = zeros(record_length, length(index0));
array0_length = length(index0);

for i=1:length(index0)
 array0(:,i) = samples(:, index0(i)+1);
end

% Set 1
index1 = load(strcat(keyStr, '_pda_index1.txt'));
array1 = zeros(record_length, length(index1));
array1_length = length(index1);

for i=1:length(index1)
 array1(:, i) = samples(:, index1(i)+1);
end

delete(strcat(keyStr, '_pda_index0.txt'));
delete(strcat(keyStr, '_pda_index1.txt'));

clear samples;

% set 0
Y_bit0=fft(array0);

tmp = zeros(record_length/2, length(index0));
tmp=Y_bit0(1:record_length/2,:);

Pyy_bit0 = zeros(record_length/2, length(index0));
for i=1:record_length/2
 Pyy_bit0(i,:) = (tmp(i,:).*conj(tmp(i,:)))/record_length;
end

clear Y_bit0;
clear tmp;
clear index0;

% compute PSD
PSD_mean_bit0 = mean(Pyy_bit0');
PSD_std_bit0 = std(Pyy_bit0');
clear Pyy_bit0;

%set1
Y_bit1=fft(array1);

tmp = zeros(record_length/2, length(index1));
tmp=Y_bit1(1:record_length/2,:);

Pyy_bit1 = zeros(record_length/2, length(index1));
for i=1:record_length/2
 Pyy_bit1(i,:) = (tmp(i,:).*conj(tmp(i,:)))/record_length;
end

clear Y_bit1;
clear tmp;
clear index1;

% compute PSD

89

PSD_mean_bit1 = mean(Pyy_bit1');
PSD_std_bit1 = std(Pyy_bit1');
clear Pyy_bit1;

% differential PSD
% for each point of frequency, check whether it's outside +/- 2*STD
std_dom= sqrt((PSD_std_bit0').^2./array0_length +
(PSD_std_bit1').^2./array1_length);
PSD_mean_diff = PSD_mean_bit0-PSD_mean_bit1;
load('sumPeaks');

for i=1:length(PSD_mean_diff)
 if(PSD_mean_diff(i) > 2*std_dom(i))
 sumPeaks(hex2dec(keyStr)+1)=sumPeaks(hex2dec(keyStr)+1)+PSD_mean_diff(i)-
2*std_dom(i);
 elseif (PSD_mean_diff(i) < -2*std_dom(i))
 sumPeaks(hex2dec(keyStr)+1)=sumPeaks(hex2dec(keyStr)+1)-2*std_dom(i)-
PSD_mean_diff(i);
 end
end

% save data into text file
save sumPeaks.mat datFileStr sumPeaks;

 clear;
 load('keyStr');
 k = hex2dec(keyStr) + 1;
end

% Key Guess
[maxSumPeaks, correct_key] = max(sumPeaks);
correct_key = correct_key - 1;
display(strcat('Correct key is 0x',dec2hex(correct_key, 2)));

load('sumPeaks.mat');
dlmwrite(strcat(datFileStr(1:length(datFileStr)-4), '_DFA.txt'), sumPeaks);
delete('samples.mat');
delete('sumPeaks.mat');
delete('keyStr.mat');

return;

90

Appendix 2 – Java program of AES encryption algorithm on PDA

public class AESencrypt
{
 private final int Nb = 4; // words in a block, always 4 for now
 private int Nk; // number of 32-bit words, 4 (128-bit), 6 (192-bit), 8 (256-bit)
 private int Nr; // number of rounds, = Nk + 6
 private int wCount; // position in w for RoundKey (= 0 each encrypt)
 private AEStables tab; // all the tables needed for AES
 private byte[] w; // the expanded key
 private long[] t; // for 4 SBox implementation
 private byte[][] state; // the state array

 // AESencrypt: constructor for class. Mainly expands key
 public AESencrypt(byte[] key)
 {
 // words in a key, = 4, or 6, or 8
 if (key.length == 16)
 Nk = 4;
 else if (key.length == 24)
 Nk = 6;
 else if (key.length == 32)
 Nk = 8;

 Nr = Nk + 6; // corresponding number of rounds
 tab = new AEStables(); // class to give values of various functions
 w = new byte[4*Nb*(Nr+1)]; // room for expanded key
 t = new long[4];
 state = new byte[4][Nb];
 KeyExpansion(key, w); // length of w depends on Nr
 }

 public void normalAES(byte[] in, byte[] out)
 {
 wCount = 0; // count bytes in expanded key throughout encryption
 Copy.copy(state, in); // actual component-wise copy
 AddRoundKey(state); // xor with expanded key
 for (int round = 1; round < Nr; round++)
 {
 SubBytes(state); // S-box substitution
 ShiftRows(state); // mix up rows
 MixColumns(state); // complicated mix of columns
 AddRoundKey(state); // xor with expanded key
 }
 SubBytes(state); // S-box substitution
 ShiftRows(state); // mix up rows
 AddRoundKey(state); // xor with expanded key
 Copy.copy(out, state);
 }

 public void normalAESwSplitMask(byte[] in, byte[] out)
 {
 wCount = 0; // count bytes in expanded key throughout encryption
 Copy.copy(state, in); // actual component-wise copy

91

 AddRoundKey(state); // xor with expanded key
 for (int round = 1; round < Nr; round++)
 {
 SubBytesSplitMask(state); // S-box substitution
 ShiftRows(state); // mix up rows
 MixColumns(state); // complicated mix of columns
 AddRoundKeySplitMask(state); // xor with expanded key
 }
 SubBytesSplitMask(state); // S-box substitution
 ShiftRows(state); // mix up rows
 AddRoundKeySplitMask(state); // xor with expanded key
 Copy.copy(out, state);
 }

 public void optAES(byte[] in, byte[] out)
 {
 wCount = 0; // count bytes in expanded key throughout encryption
 Copy.copy(state, in); // actual component-wise copy
 AddRoundKey(state); // xor with expanded key
 t[0] = 0;
 t[1] = 0;
 t[2] = 0;
 t[3] = 0;

 for (int round = 1; round < Nr; round++)
 {
 t[0] = tab.Te0(state[0][0]) ^ tab.Te1(state[1][1]) ^

 tab.Te2(state[2][2]) ^ tab.Te3(state[3][3]);
 t[1] = tab.Te0(state[1][0]) ^ tab.Te1(state[2][1]) ^

 tab.Te2(state[3][2]) ^ tab.Te3(state[0][3]);
 t[2] = tab.Te0(state[2][0]) ^ tab.Te1(state[3][1]) ^

 tab.Te2(state[0][2]) ^ tab.Te3(state[1][3]);
 t[3] = tab.Te0(state[3][0]) ^ tab.Te1(state[0][1]) ^

 tab.Te2(state[1][2]) ^ tab.Te3(state[2][3]);

 state[0][0] = (byte) (t[0] >> 24);
 state[1][0] = (byte) (t[0] >> 16);
 state[2][0] = (byte) (t[0] >> 8);
 state[3][0] = (byte) (t[0]);

 state[0][1] = (byte) (t[3] >> 16);
 state[1][1] = (byte) (t[3] >> 8);
 state[2][1] = (byte) (t[3]);
 state[3][1] = (byte) (t[3] >> 24);

 state[0][2] = (byte) (t[2] >> 8);
 state[1][2] = (byte) (t[2]);
 state[2][2] = (byte) (t[2] >> 24);
 state[3][2] = (byte) (t[2] >> 16);

 state[0][3] = (byte) (t[1]);
 state[1][3] = (byte) (t[1] >> 24);
 state[2][3] = (byte) (t[1] >> 16);
 state[3][3] = (byte) (t[1] >> 8);

 AddRoundKey(state); // xor with expanded key
 }

92

 // table Te4 doesn't have the MixColumn operation
 t[0] = (tab.Te4(state[2][3]) & 0xff0000L)

^ (tab.Te4(state[0][0]) & 0xff000000L)
^ (tab.Te4(state[0][2]) & 0xff00L)
^ (tab.Te4(state[2][1]) & 0xffL);

 t[1] = (tab.Te4(state[3][2]) & 0xff0000L)
^ (tab.Te4(state[1][3]) & 0xff000000L)
^ (tab.Te4(state[1][1]) & 0xff00L)
^ (tab.Te4(state[3][0]) & 0xffL);

 t[2] = (tab.Te4(state[0][1]) & 0xff0000L)
^ (tab.Te4(state[2][2]) & 0xff000000L)
^ (tab.Te4(state[2][0]) & 0xff00L)
^ (tab.Te4(state[0][3]) & 0xffL);

 t[3] = (tab.Te4(state[1][0]) & 0xff0000L)
^ (tab.Te4(state[3][1]) & 0xff000000L)
^ (tab.Te4(state[3][3]) & 0xff00L)
^ (tab.Te4(state[1][2]) & 0xffL);

 state[0][0] = (byte) (t[0] >> 24);
 state[1][0] = (byte) (t[1] >> 8);
 state[2][0] = (byte) (t[2] >> 24);
 state[3][0] = (byte) (t[3] >> 8);

 state[0][1] = (byte) (t[2] >> 16);
 state[1][1] = (byte) (t[3]);
 state[2][1] = (byte) (t[0] >> 16);
 state[3][1] = (byte) (t[1]);

 state[0][2] = (byte) (t[0] >> 8);
 state[1][2] = (byte) (t[1] >> 24);
 state[2][2] = (byte) (t[2] >> 8);
 state[3][2] = (byte) (t[3] >> 24);

 state[0][3] = (byte) (t[2]);
 state[1][3] = (byte) (t[3] >> 16);
 state[2][3] = (byte) (t[0]);
 state[3][3] = (byte) (t[1] >> 16);

 AddRoundKey(state); // xor with expanded key
 Copy.copy(out, state);
 }

 // Cipher: actual AES encrytion
 public void optAESwSplitMask(byte[] in, byte[] out)
 {
 wCount = 0; // count bytes in expanded key throughout encryption
 Copy.copy(state, in); // actual component-wise copy
 AddRoundKey(state); // xor with expanded key
 long t0 = 0;
 long t1 = 0;
 long t2 = 0;
 long t3 = 0;
 long m0 = 0;
 long m1 = 0;
 long m2 = 0;
 long m3 = 0;

93

 for (int round = 1; round < Nr; round++)
 {
 t0 = (tab.MTe0(state[0][0]) ^ tab.MTe1(state[1][1])

^ tab.MTe2(state[2][2]) ^ tab.MTe3(state[3][3])) & 0xffffffffL;
 m0 = (tab.MOpt(state[0][0]) ^ tab.MOpt(state[1][1])

^ tab.MOpt(state[2][2]) ^ tab.MOpt(state[3][3])) & 0xffffffffL;
 t0 = t0 ^ m0;

 t1 = (tab.MTe0(state[1][0]) ^ tab.MTe1(state[2][1])

^ tab.MTe2(state[3][2]) ^ tab.MTe3(state[0][3])) & 0xffffffffL;
 m1 = (tab.MOpt(state[1][0]) ^ tab.MOpt(state[2][1])

^ tab.MOpt(state[3][2]) ^ tab.MOpt(state[0][3])) & 0xffffffffL;
 t1 = t1 ^ m1;

 t2 = (tab.MTe0(state[2][0]) ^ tab.MTe1(state[3][1])

^ tab.MTe2(state[0][2]) ^ tab.MTe3(state[1][3])) & 0xffffffffL;
 m2 = (tab.MOpt(state[2][0]) ^ tab.MOpt(state[3][1])

^ tab.MOpt(state[0][2]) ^ tab.MOpt(state[1][3])) & 0xffffffffL;
 t2 = t2 ^ m2;

 t3 = (tab.MTe0(state[3][0]) ^ tab.MTe1(state[0][1])

^ tab.MTe2(state[1][2]) ^ tab.MTe3(state[2][3])) & 0xffffffffL;
 m3 = (tab.MOpt(state[3][0]) ^ tab.MOpt(state[0][1])

^ tab.MOpt(state[1][2]) ^ tab.MOpt(state[2][3])) & 0xffffffffL;
 t3 = t3 ^ m3;

 state[0][0] = (byte) (t0 >> 24);
 state[1][0] = (byte) (t0 >> 16);
 state[2][0] = (byte) (t0 >> 8);
 state[3][0] = (byte) (t0);

 state[0][1] = (byte) (t3 >> 16);
 state[1][1] = (byte) (t3 >> 8);
 state[2][1] = (byte) (t3);
 state[3][1] = (byte) (t3 >> 24);

 state[0][2] = (byte) (t2 >> 8);
 state[1][2] = (byte) (t2);
 state[2][2] = (byte) (t2 >> 24);
 state[3][2] = (byte) (t2 >> 16);

 state[0][3] = (byte) (t1);
 state[1][3] = (byte) (t1 >> 24);
 state[2][3] = (byte) (t1 >> 16);
 state[3][3] = (byte) (t1 >> 8);

 AddRoundKey(state); // xor with expanded key
 }

 // table Te4 doesn't have the MixColumn operation
 t0 = ((tab.MTe4(state[2][3]) & 0xff0000L)

^ (tab.MTe4(state[0][0]) & 0xff000000L)
^ (tab.MTe4(state[0][2]) & 0xff00L)
^ (tab.MTe4(state[2][1]) & 0xffL)) & 0xffffffffL;

 t1 = ((tab.MTe4(state[3][2]) & 0xff0000L)
^ (tab.MTe4(state[1][3]) & 0xff000000L)
^ (tab.MTe4(state[1][1]) & 0xff00L)

94

^ (tab.MTe4(state[3][0]) & 0xffL)) & 0xffffffffL;
 t2 = ((tab.MTe4(state[0][1]) & 0xff0000L)

^ (tab.MTe4(state[2][2]) & 0xff000000L)
^ (tab.MTe4(state[2][0]) & 0xff00L)
^ (tab.MTe4(state[0][3]) & 0xffL)) & 0xffffffffL;

 t3 = ((tab.MTe4(state[1][0]) & 0xff0000L)
^ (tab.MTe4(state[3][1]) & 0xff000000L)
^ (tab.MTe4(state[3][3]) & 0xff00L)
^ (tab.MTe4(state[1][2]) & 0xffL)) & 0xffffffffL;

 m0 = ((tab.MOpt(state[2][3]) & 0xff0000L)

^ (tab.MOpt(state[0][0]) & 0xff000000L)
^ (tab.MOpt(state[0][2]) & 0xff00L)
^ (tab.MOpt(state[2][1]) & 0xffL)) & 0xffffffffL;

 m1 = ((tab.MOpt(state[3][2]) & 0xff0000L)
^ (tab.MOpt(state[1][3]) & 0xff000000L)
^ (tab.MOpt(state[1][1]) & 0xff00L)
^ (tab.MOpt(state[3][0]) & 0xffL)) & 0xffffffffL;

 m2 = ((tab.MOpt(state[0][1]) & 0xff0000L)
^ (tab.MOpt(state[2][2]) & 0xff000000L)
^ (tab.MOpt(state[2][0]) & 0xff00L)
^ (tab.MOpt(state[0][3]) & 0xffL)) & 0xffffffffL;

 m3 = ((tab.MOpt(state[1][0]) & 0xff0000L)
^ (tab.MOpt(state[3][1]) & 0xff000000L)
^ (tab.MOpt(state[3][3]) & 0xff00L)
^ (tab.MOpt(state[1][2]) & 0xffL)) & 0xffffffffL;

 t0 = t0 ^ m0 ^ tab.maskOpt();
 t1 = t1 ^ m1 ^ tab.maskOpt();
 t2 = t2 ^ m2 ^ tab.maskOpt();
 t3 = t3 ^ m3 ^ tab.maskOpt();

 state[0][0] = (byte) (t0 >> 24);
 state[1][0] = (byte) (t1 >> 8);
 state[2][0] = (byte) (t2 >> 24);
 state[3][0] = (byte) (t3 >> 8);

 state[0][1] = (byte) (t2 >> 16);
 state[1][1] = (byte) (t3);
 state[2][1] = (byte) (t0 >> 16);
 state[3][1] = (byte) (t1);

 state[0][2] = (byte) (t0 >> 8);
 state[1][2] = (byte) (t1 >> 24);
 state[2][2] = (byte) (t2 >> 8);
 state[3][2] = (byte) (t3 >> 24);

 state[0][3] = (byte) (t2);
 state[1][3] = (byte) (t3 >> 16);
 state[2][3] = (byte) (t0);
 state[3][3] = (byte) (t1 >> 16);

 AddRoundKey(state); // xor with expanded key
 Copy.copy(out, state);
 }

 // KeyExpansion: expand key, byte-oriented code, but tracks words

95

 // KeyExpansion generates a total of Nb*(Nr+1) words each of 4-byte
 private void KeyExpansion(byte[] key, byte[] w)
 {
 byte[] temp = new byte[4];
 // first just copy key to w
 int j = 0;
 while (j < 4*Nk)
 {
 w[j] = key[j++];
 }
 // here j == 4*Nk;
 int i;
 while(j < 4*Nb*(Nr+1))
 {
 i = j/4; // j is always multiple of 4 here
 // handle everything word-at-a time, 4 bytes at a time
 for (int iTemp = 0; iTemp < 4; iTemp++)
 temp[iTemp] = w[j-4+iTemp];

 if (i % Nk == 0)
 {
 byte ttemp, tRcon;
 byte oldtemp0 = temp[0];
 for (int iTemp = 0; iTemp < 4; iTemp++)
 {
 if (iTemp == 3) ttemp = oldtemp0;
 else ttemp = temp[iTemp+1];
 if (iTemp == 0) tRcon = tab.Rcon(i/Nk);
 else tRcon = 0;
 temp[iTemp] = (byte)(tab.SBox(ttemp) ^ tRcon);
 }
 }
 else if (Nk > 6 && (i%Nk) == 4)
 {
 for (int iTemp = 0; iTemp < 4; iTemp++)
 temp[iTemp] = tab.SBox(temp[iTemp]);
 }

 for (int iTemp = 0; iTemp < 4; iTemp++)
 w[j+iTemp] = (byte)(w[j - 4*Nk + iTemp] ^ temp[iTemp]);
 j = j + 4;
 }
 }

 // ShiftRows: simple circular shift of rows 1, 2, 3 by 1, 2, 3
 private void ShiftRows(byte[][] state)
 {
 byte[] t = new byte[4];
 for (int r = 1; r < 4; r++)
 {
 for (int c = 0; c < Nb; c++)
 t[c] = state[r][(c + r)%Nb];
 for (int c = 0; c < Nb; c++)
 state[r][c] = t[c];
 }
 }

96

 // MixColumns: complex and sophisticated mixing of columns
 private void MixColumns(byte[][] s)
 {
 int[] sp = new int[4];
 byte b02 = (byte)0x02, b03 = (byte)0x03;
 for (int c = 0; c < 4; c++)
 {
 sp[0] = tab.FFMul(b02, s[0][c]) ^ tab.FFMul(b03, s[1][c]) ^
 s[2][c] ^ s[3][c];
 sp[1] = s[0][c] ^ tab.FFMul(b02, s[1][c]) ^
 tab.FFMul(b03, s[2][c]) ^ s[3][c];
 sp[2] = s[0][c] ^ s[1][c] ^
 tab.FFMul(b02, s[2][c]) ^ tab.FFMul(b03, s[3][c]);
 sp[3] = tab.FFMul(b03, s[0][c]) ^ s[1][c] ^
 s[2][c] ^ tab.FFMul(b02, s[3][c]);
 for (int i = 0; i < 4; i++)
 s[i][c] = (byte)(sp[i]);
 }
 }

 // AddRoundKey: xor a portion of expanded key with state
 private void AddRoundKey(byte[][] state)
 {
 for (int c = 0; c < Nb; c++)
 for (int r = 0; r < 4; r++)
 state[r][c] = (byte)(state[r][c] ^ w[wCount++]);
 }

 // need to unmask after each round for the normal AES impl.
 private void AddRoundKeySplitMask(byte[][] state)
 {
 for (int c = 0; c < Nb; c++)
 {
 for (int r = 0; r < 4; r++)
 {
 state[r][c] = (byte)(state[r][c] ^ tab.maskNorm());
 state[r][c] = (byte)(state[r][c] ^ w[wCount++]);
 }
 }
 }

 // SubBytes: apply Sbox substitution to each byte of state
 private void SubBytes(byte[][] state)
 {
 for (int row = 0; row < 4; row++)
 for (int col = 0; col < Nb; col++)
 state[row][col] = tab.SBox(state[row][col]);
 }

 // need to unmask after each round for the normal AES impl.
 private void SubBytesSplitMask(byte[][] state)
 {
 for (int row = 0; row < 4; row++)
 {
 for (int col = 0; col < Nb; col++)
 {
 byte index = state[row][col];

97

 state[row][col] = tab.MSBox(index);
 state[row][col] = (byte)(state[row][col] ^ tab.M(index));
 }
 }
 }
}

public class AEStables
{
 public AEStables()
 {
 loadE();
 loadL();
 loadInv();
 loadS();
 loadInvS();
 loadPowX();
 genMTablesOrigAES();
 genMTablesOptAES();
 }

 private byte[] E = new byte[256]; // "exp" table (base 0x03)
 private byte[] L = new byte[256]; // "Log" table (base 0x03)
 private byte[] S = new byte[256]; // SubBytes table
 private byte[] invS = new byte[256]; // inverse of SubBytes table
 private byte[] inv = new byte[256]; // multiplicative inverse table
 private byte[] powX = new byte[15]; // powers of x = 0x02

 /**
 * MTe0 to MTe4 are the 4 masked S-Boxes for split mask countermeasure
 * on the optimized AES implementation (same as ARM)
 * MOpt is the M table for the optimized AES
 */
 private long[] MTe0 = new long[256]; // masked Te0
 private long[] MTe1 = new long[256]; // masked Te1
 private long[] MTe2 = new long[256]; // masked Te2
 private long[] MTe3 = new long[256]; // masked Te3
 private long[] MTe4 = new long[256]; // masked Te4
 private long[] MOpt = new long[256]; // M table
 // this is the mask for the optimized AES implementation
 private int maskOpt;

 /**
 * MS the masked S-Box for split mask countermeasure
 * on the normal AES implementation with only 1 S-Box
 * MOpt is the M table for the normal AES
 */
 private byte[] MS = new byte[256]; // masked SBox
 private byte[] M = new byte[256]; // M table for masked SBox
 // this is the mask for the normal AES implementation
 private byte maskNorm;

 /**
 * Te0 to Te4 are S-Boxes for the optimized AES implementation
 * by Dr. Brian Gladman, they are taken from the assembly
 * code from the ARM
 */

98

 private long[] Te0 = {
 0xc66363a5L, 0xf87c7c84L, 0xee777799L, 0xf67b7b8dL,
 0xfff2f20dL, 0xd66b6bbdL, 0xde6f6fb1L, 0x91c5c554L,
 0x60303050L, 0x02010103L, 0xce6767a9L, 0x562b2b7dL,
 0xe7fefe19L, 0xb5d7d762L, 0x4dababe6L, 0xec76769aL,
 0x8fcaca45L, 0x1f82829dL, 0x89c9c940L, 0xfa7d7d87L,
 0xeffafa15L, 0xb25959ebL, 0x8e4747c9L, 0xfbf0f00bL,
 0x41adadecL, 0xb3d4d467L, 0x5fa2a2fdL, 0x45afafeaL,
 0x239c9cbfL, 0x53a4a4f7L, 0xe4727296L, 0x9bc0c05bL,
 0x75b7b7c2L, 0xe1fdfd1cL, 0x3d9393aeL, 0x4c26266aL,
 0x6c36365aL, 0x7e3f3f41L, 0xf5f7f702L, 0x83cccc4fL,
 0x6834345cL, 0x51a5a5f4L, 0xd1e5e534L, 0xf9f1f108L,
 0xe2717193L, 0xabd8d873L, 0x62313153L, 0x2a15153fL,
 0x0804040cL, 0x95c7c752L, 0x46232365L, 0x9dc3c35eL,
 0x30181828L, 0x379696a1L, 0x0a05050fL, 0x2f9a9ab5L,
 0x0e070709L, 0x24121236L, 0x1b80809bL, 0xdfe2e23dL,
 0xcdebeb26L, 0x4e272769L, 0x7fb2b2cdL, 0xea75759fL,
 0x1209091bL, 0x1d83839eL, 0x582c2c74L, 0x341a1a2eL,
 0x361b1b2dL, 0xdc6e6eb2L, 0xb45a5aeeL, 0x5ba0a0fbL,
 0xa45252f6L, 0x763b3b4dL, 0xb7d6d661L, 0x7db3b3ceL,
 0x5229297bL, 0xdde3e33eL, 0x5e2f2f71L, 0x13848497L,
 0xa65353f5L, 0xb9d1d168L, 0x00000000L, 0xc1eded2cL,
 0x40202060L, 0xe3fcfc1fL, 0x79b1b1c8L, 0xb65b5bedL,
 0xd46a6abeL, 0x8dcbcb46L, 0x67bebed9L, 0x7239394bL,
 0x944a4adeL, 0x984c4cd4L, 0xb05858e8L, 0x85cfcf4aL,
 0xbbd0d06bL, 0xc5efef2aL, 0x4faaaae5L, 0xedfbfb16L,
 0x864343c5L, 0x9a4d4dd7L, 0x66333355L, 0x11858594L,
 0x8a4545cfL, 0xe9f9f910L, 0x04020206L, 0xfe7f7f81L,
 0xa05050f0L, 0x783c3c44L, 0x259f9fbaL, 0x4ba8a8e3L,
 0xa25151f3L, 0x5da3a3feL, 0x804040c0L, 0x058f8f8aL,
 0x3f9292adL, 0x219d9dbcL, 0x70383848L, 0xf1f5f504L,
 0x63bcbcdfL, 0x77b6b6c1L, 0xafdada75L, 0x42212163L,
 0x20101030L, 0xe5ffff1aL, 0xfdf3f30eL, 0xbfd2d26dL,
 0x81cdcd4cL, 0x180c0c14L, 0x26131335L, 0xc3ecec2fL,
 0xbe5f5fe1L, 0x359797a2L, 0x884444ccL, 0x2e171739L,
 0x93c4c457L, 0x55a7a7f2L, 0xfc7e7e82L, 0x7a3d3d47L,
 0xc86464acL, 0xba5d5de7L, 0x3219192bL, 0xe6737395L,
 0xc06060a0L, 0x19818198L, 0x9e4f4fd1L, 0xa3dcdc7fL,
 0x44222266L, 0x542a2a7eL, 0x3b9090abL, 0x0b888883L,
 0x8c4646caL, 0xc7eeee29L, 0x6bb8b8d3L, 0x2814143cL,
 0xa7dede79L, 0xbc5e5ee2L, 0x160b0b1dL, 0xaddbdb76L,
 0xdbe0e03bL, 0x64323256L, 0x743a3a4eL, 0x140a0a1eL,
 0x924949dbL, 0x0c06060aL, 0x4824246cL, 0xb85c5ce4L,
 0x9fc2c25dL, 0xbdd3d36eL, 0x43acacefL, 0xc46262a6L,
 0x399191a8L, 0x319595a4L, 0xd3e4e437L, 0xf279798bL,
 0xd5e7e732L, 0x8bc8c843L, 0x6e373759L, 0xda6d6db7L,
 0x018d8d8cL, 0xb1d5d564L, 0x9c4e4ed2L, 0x49a9a9e0L,
 0xd86c6cb4L, 0xac5656faL, 0xf3f4f407L, 0xcfeaea25L,
 0xca6565afL, 0xf47a7a8eL, 0x47aeaee9L, 0x10080818L,
 0x6fbabad5L, 0xf0787888L, 0x4a25256fL, 0x5c2e2e72L,
 0x381c1c24L, 0x57a6a6f1L, 0x73b4b4c7L, 0x97c6c651L,
 0xcbe8e823L, 0xa1dddd7cL, 0xe874749cL, 0x3e1f1f21L,
 0x964b4bddL, 0x61bdbddcL, 0x0d8b8b86L, 0x0f8a8a85L,
 0xe0707090L, 0x7c3e3e42L, 0x71b5b5c4L, 0xcc6666aaL,
 0x904848d8L, 0x06030305L, 0xf7f6f601L, 0x1c0e0e12L,
 0xc26161a3L, 0x6a35355fL, 0xae5757f9L, 0x69b9b9d0L,
 0x17868691L, 0x99c1c158L, 0x3a1d1d27L, 0x279e9eb9L,

99

 0xd9e1e138L, 0xebf8f813L, 0x2b9898b3L, 0x22111133L,
 0xd26969bbL, 0xa9d9d970L, 0x078e8e89L, 0x339494a7L,
 0x2d9b9bb6L, 0x3c1e1e22L, 0x15878792L, 0xc9e9e920L,
 0x87cece49L, 0xaa5555ffL, 0x50282878L, 0xa5dfdf7aL,
 0x038c8c8fL, 0x59a1a1f8L, 0x09898980L, 0x1a0d0d17L,
 0x65bfbfdaL, 0xd7e6e631L, 0x844242c6L, 0xd06868b8L,
 0x824141c3L, 0x299999b0L, 0x5a2d2d77L, 0x1e0f0f11L,
 0x7bb0b0cbL, 0xa85454fcL, 0x6dbbbbd6L, 0x2c16163aL};

 private long[] Te1 = {
 0xa5c66363l, 0x84f87c7cl, 0x99ee7777l, 0x8df67b7bl,
 0x0dfff2f2l, 0xbdd66b6bl, 0xb1de6f6fl, 0x5491c5c5l,
 0x50603030l, 0x03020101l, 0xa9ce6767l, 0x7d562b2bl,
 0x19e7fefel, 0x62b5d7d7l, 0xe64dababl, 0x9aec7676l,
 0x458fcacal, 0x9d1f8282l, 0x4089c9c9l, 0x87fa7d7dl,
 0x15effafal, 0xebb25959l, 0xc98e4747l, 0x0bfbf0f0l,
 0xec41adadl, 0x67b3d4d4l, 0xfd5fa2a2l, 0xea45afafl,
 0xbf239c9cl, 0xf753a4a4l, 0x96e47272l, 0x5b9bc0c0l,
 0xc275b7b7l, 0x1ce1fdfdl, 0xae3d9393l, 0x6a4c2626l,
 0x5a6c3636l, 0x417e3f3fl, 0x02f5f7f7l, 0x4f83ccccl,
 0x5c683434l, 0xf451a5a5l, 0x34d1e5e5l, 0x08f9f1f1l,
 0x93e27171l, 0x73abd8d8l, 0x53623131l, 0x3f2a1515l,
 0x0c080404l, 0x5295c7c7l, 0x65462323l, 0x5e9dc3c3l,
 0x28301818l, 0xa1379696l, 0x0f0a0505l, 0xb52f9a9al,
 0x090e0707l, 0x36241212l, 0x9b1b8080l, 0x3ddfe2e2l,
 0x26cdebebl, 0x694e2727l, 0xcd7fb2b2l, 0x9fea7575l,
 0x1b120909l, 0x9e1d8383l, 0x74582c2cl, 0x2e341a1al,
 0x2d361b1bl, 0xb2dc6e6el, 0xeeb45a5al, 0xfb5ba0a0l,
 0xf6a45252l, 0x4d763b3bl, 0x61b7d6d6l, 0xce7db3b3l,
 0x7b522929l, 0x3edde3e3l, 0x715e2f2fl, 0x97138484l,
 0xf5a65353l, 0x68b9d1d1l, 0x00000000l, 0x2cc1ededl,
 0x60402020l, 0x1fe3fcfcl, 0xc879b1b1l, 0xedb65b5bl,
 0xbed46a6al, 0x468dcbcbl, 0xd967bebel, 0x4b723939l,
 0xde944a4al, 0xd4984c4cl, 0xe8b05858l, 0x4a85cfcfl,
 0x6bbbd0d0l, 0x2ac5efefl, 0xe54faaaal, 0x16edfbfbl,
 0xc5864343l, 0xd79a4d4dl, 0x55663333l, 0x94118585l,
 0xcf8a4545l, 0x10e9f9f9l, 0x06040202l, 0x81fe7f7fl,
 0xf0a05050l, 0x44783c3cl, 0xba259f9fl, 0xe34ba8a8l,
 0xf3a25151l, 0xfe5da3a3l, 0xc0804040l, 0x8a058f8fl,
 0xad3f9292l, 0xbc219d9dl, 0x48703838l, 0x04f1f5f5l,
 0xdf63bcbcl, 0xc177b6b6l, 0x75afdadal, 0x63422121l,
 0x30201010l, 0x1ae5ffffl, 0x0efdf3f3l, 0x6dbfd2d2l,
 0x4c81cdcdl, 0x14180c0cl, 0x35261313l, 0x2fc3ececl,
 0xe1be5f5fl, 0xa2359797l, 0xcc884444l, 0x392e1717l,
 0x5793c4c4l, 0xf255a7a7l, 0x82fc7e7el, 0x477a3d3dl,
 0xacc86464l, 0xe7ba5d5dl, 0x2b321919l, 0x95e67373l,
 0xa0c06060l, 0x98198181l, 0xd19e4f4fl, 0x7fa3dcdcl,
 0x66442222l, 0x7e542a2al, 0xab3b9090l, 0x830b8888l,
 0xca8c4646l, 0x29c7eeeel, 0xd36bb8b8l, 0x3c281414l,
 0x79a7dedel, 0xe2bc5e5el, 0x1d160b0bl, 0x76addbdbl,
 0x3bdbe0e0l, 0x56643232l, 0x4e743a3al, 0x1e140a0al,
 0xdb924949l, 0x0a0c0606l, 0x6c482424l, 0xe4b85c5cl,
 0x5d9fc2c2l, 0x6ebdd3d3l, 0xef43acacl, 0xa6c46262l,
 0xa8399191l, 0xa4319595l, 0x37d3e4e4l, 0x8bf27979l,
 0x32d5e7e7l, 0x438bc8c8l, 0x596e3737l, 0xb7da6d6dl,
 0x8c018d8dl, 0x64b1d5d5l, 0xd29c4e4el, 0xe049a9a9l,
 0xb4d86c6cl, 0xfaac5656l, 0x07f3f4f4l, 0x25cfeaeal,

100

 0xafca6565l, 0x8ef47a7al, 0xe947aeael, 0x18100808l,
 0xd56fbabal, 0x88f07878l, 0x6f4a2525l, 0x725c2e2el,
 0x24381c1cl, 0xf157a6a6l, 0xc773b4b4l, 0x5197c6c6l,
 0x23cbe8e8l, 0x7ca1ddddl, 0x9ce87474l, 0x213e1f1fl,
 0xdd964b4bl, 0xdc61bdbdl, 0x860d8b8bl, 0x850f8a8al,
 0x90e07070l, 0x427c3e3el, 0xc471b5b5l, 0xaacc6666l,
 0xd8904848l, 0x05060303l, 0x01f7f6f6l, 0x121c0e0el,
 0xa3c26161l, 0x5f6a3535l, 0xf9ae5757l, 0xd069b9b9l,
 0x91178686l, 0x5899c1c1l, 0x273a1d1dl, 0xb9279e9el,
 0x38d9e1e1l, 0x13ebf8f8l, 0xb32b9898l, 0x33221111l,
 0xbbd26969l, 0x70a9d9d9l, 0x89078e8el, 0xa7339494l,
 0xb62d9b9bl, 0x223c1e1el, 0x92158787l, 0x20c9e9e9l,
 0x4987cecel, 0xffaa5555l, 0x78502828l, 0x7aa5dfdfl,
 0x8f038c8cl, 0xf859a1a1l, 0x80098989l, 0x171a0d0dl,
 0xda65bfbfl, 0x31d7e6e6l, 0xc6844242l, 0xb8d06868l,
 0xc3824141l, 0xb0299999l, 0x775a2d2dl, 0x111e0f0fl,
 0xcb7bb0b0l, 0xfca85454l, 0xd66dbbbbl, 0x3a2c1616l};

 private long[] Te2 = {
 0x63a5c663l, 0x7c84f87cl, 0x7799ee77l, 0x7b8df67bl,
 0xf20dfff2l, 0x6bbdd66bl, 0x6fb1de6fl, 0xc55491c5l,
 0x30506030l, 0x01030201l, 0x67a9ce67l, 0x2b7d562bl,
 0xfe19e7fel, 0xd762b5d7l, 0xabe64dabl, 0x769aec76l,
 0xca458fcal, 0x829d1f82l, 0xc94089c9l, 0x7d87fa7dl,
 0xfa15effal, 0x59ebb259l, 0x47c98e47l, 0xf00bfbf0l,
 0xadec41adl, 0xd467b3d4l, 0xa2fd5fa2l, 0xafea45afl,
 0x9cbf239cl, 0xa4f753a4l, 0x7296e472l, 0xc05b9bc0l,
 0xb7c275b7l, 0xfd1ce1fdl, 0x93ae3d93l, 0x266a4c26l,
 0x365a6c36l, 0x3f417e3fl, 0xf702f5f7l, 0xcc4f83ccl,
 0x345c6834l, 0xa5f451a5l, 0xe534d1e5l, 0xf108f9f1l,
 0x7193e271l, 0xd873abd8l, 0x31536231l, 0x153f2a15l,
 0x040c0804l, 0xc75295c7l, 0x23654623l, 0xc35e9dc3l,
 0x18283018l, 0x96a13796l, 0x050f0a05l, 0x9ab52f9al,
 0x07090e07l, 0x12362412l, 0x809b1b80l, 0xe23ddfe2l,
 0xeb26cdebl, 0x27694e27l, 0xb2cd7fb2l, 0x759fea75l,
 0x091b1209l, 0x839e1d83l, 0x2c74582cl, 0x1a2e341al,
 0x1b2d361bl, 0x6eb2dc6el, 0x5aeeb45al, 0xa0fb5ba0l,
 0x52f6a452l, 0x3b4d763bl, 0xd661b7d6l, 0xb3ce7db3l,
 0x297b5229l, 0xe33edde3l, 0x2f715e2fl, 0x84971384l,
 0x53f5a653l, 0xd168b9d1l, 0x00000000l, 0xed2cc1edl,
 0x20604020l, 0xfc1fe3fcl, 0xb1c879b1l, 0x5bedb65bl,
 0x6abed46al, 0xcb468dcbl, 0xbed967bel, 0x394b7239l,
 0x4ade944al, 0x4cd4984cl, 0x58e8b058l, 0xcf4a85cfl,
 0xd06bbbd0l, 0xef2ac5efl, 0xaae54faal, 0xfb16edfbl,
 0x43c58643l, 0x4dd79a4dl, 0x33556633l, 0x85941185l,
 0x45cf8a45l, 0xf910e9f9l, 0x02060402l, 0x7f81fe7fl,
 0x50f0a050l, 0x3c44783cl, 0x9fba259fl, 0xa8e34ba8l,
 0x51f3a251l, 0xa3fe5da3l, 0x40c08040l, 0x8f8a058fl,
 0x92ad3f92l, 0x9dbc219dl, 0x38487038l, 0xf504f1f5l,
 0xbcdf63bcl, 0xb6c177b6l, 0xda75afdal, 0x21634221l,
 0x10302010l, 0xff1ae5ffl, 0xf30efdf3l, 0xd26dbfd2l,
 0xcd4c81cdl, 0x0c14180cl, 0x13352613l, 0xec2fc3ecl,
 0x5fe1be5fl, 0x97a23597l, 0x44cc8844l, 0x17392e17l,
 0xc45793c4l, 0xa7f255a7l, 0x7e82fc7el, 0x3d477a3dl,
 0x64acc864l, 0x5de7ba5dl, 0x192b3219l, 0x7395e673l,
 0x60a0c060l, 0x81981981l, 0x4fd19e4fl, 0xdc7fa3dcl,
 0x22664422l, 0x2a7e542al, 0x90ab3b90l, 0x88830b88l,

101

 0x46ca8c46l, 0xee29c7eel, 0xb8d36bb8l, 0x143c2814l,
 0xde79a7del, 0x5ee2bc5el, 0x0b1d160bl, 0xdb76addbl,
 0xe03bdbe0l, 0x32566432l, 0x3a4e743al, 0x0a1e140al,
 0x49db9249l, 0x060a0c06l, 0x246c4824l, 0x5ce4b85cl,
 0xc25d9fc2l, 0xd36ebdd3l, 0xacef43acl, 0x62a6c462l,
 0x91a83991l, 0x95a43195l, 0xe437d3e4l, 0x798bf279l,
 0xe732d5e7l, 0xc8438bc8l, 0x37596e37l, 0x6db7da6dl,
 0x8d8c018dl, 0xd564b1d5l, 0x4ed29c4el, 0xa9e049a9l,
 0x6cb4d86cl, 0x56faac56l, 0xf407f3f4l, 0xea25cfeal,
 0x65afca65l, 0x7a8ef47al, 0xaee947ael, 0x08181008l,
 0xbad56fbal, 0x7888f078l, 0x256f4a25l, 0x2e725c2el,
 0x1c24381cl, 0xa6f157a6l, 0xb4c773b4l, 0xc65197c6l,
 0xe823cbe8l, 0xdd7ca1ddl, 0x749ce874l, 0x1f213e1fl,
 0x4bdd964bl, 0xbddc61bdl, 0x8b860d8bl, 0x8a850f8al,
 0x7090e070l, 0x3e427c3el, 0xb5c471b5l, 0x66aacc66l,
 0x48d89048l, 0x03050603l, 0xf601f7f6l, 0x0e121c0el,
 0x61a3c261l, 0x355f6a35l, 0x57f9ae57l, 0xb9d069b9l,
 0x86911786l, 0xc15899c1l, 0x1d273a1dl, 0x9eb9279el,
 0xe138d9e1l, 0xf813ebf8l, 0x98b32b98l, 0x11332211l,
 0x69bbd269l, 0xd970a9d9l, 0x8e89078el, 0x94a73394l,
 0x9bb62d9bl, 0x1e223c1el, 0x87921587l, 0xe920c9e9l,
 0xce4987cel, 0x55ffaa55l, 0x28785028l, 0xdf7aa5dfl,
 0x8c8f038cl, 0xa1f859a1l, 0x89800989l, 0x0d171a0dl,
 0xbfda65bfl, 0xe631d7e6l, 0x42c68442l, 0x68b8d068l,
 0x41c38241l, 0x99b02999l, 0x2d775a2dl, 0x0f111e0fl,
 0xb0cb7bb0l, 0x54fca854l, 0xbbd66dbbl, 0x163a2c16l};

 private long[] Te3 = {
 0x6363a5c6l, 0x7c7c84f8l, 0x777799eel, 0x7b7b8df6l,
 0xf2f20dffl, 0x6b6bbdd6l, 0x6f6fb1del, 0xc5c55491l,
 0x30305060l, 0x01010302l, 0x6767a9cel, 0x2b2b7d56l,
 0xfefe19e7l, 0xd7d762b5l, 0xababe64dl, 0x76769aecl,
 0xcaca458fl, 0x82829d1fl, 0xc9c94089l, 0x7d7d87fal,
 0xfafa15efl, 0x5959ebb2l, 0x4747c98el, 0xf0f00bfbl,
 0xadadec41l, 0xd4d467b3l, 0xa2a2fd5fl, 0xafafea45l,
 0x9c9cbf23l, 0xa4a4f753l, 0x727296e4l, 0xc0c05b9bl,
 0xb7b7c275l, 0xfdfd1ce1l, 0x9393ae3dl, 0x26266a4cl,
 0x36365a6cl, 0x3f3f417el, 0xf7f702f5l, 0xcccc4f83l,
 0x34345c68l, 0xa5a5f451l, 0xe5e534d1l, 0xf1f108f9l,
 0x717193e2l, 0xd8d873abl, 0x31315362l, 0x15153f2al,
 0x04040c08l, 0xc7c75295l, 0x23236546l, 0xc3c35e9dl,
 0x18182830l, 0x9696a137l, 0x05050f0al, 0x9a9ab52fl,
 0x0707090el, 0x12123624l, 0x80809b1bl, 0xe2e23ddfl,
 0xebeb26cdl, 0x2727694el, 0xb2b2cd7fl, 0x75759feal,
 0x09091b12l, 0x83839e1dl, 0x2c2c7458l, 0x1a1a2e34l,
 0x1b1b2d36l, 0x6e6eb2dcl, 0x5a5aeeb4l, 0xa0a0fb5bl,
 0x5252f6a4l, 0x3b3b4d76l, 0xd6d661b7l, 0xb3b3ce7dl,
 0x29297b52l, 0xe3e33eddl, 0x2f2f715el, 0x84849713l,
 0x5353f5a6l, 0xd1d168b9l, 0x00000000l, 0xeded2cc1l,
 0x20206040l, 0xfcfc1fe3l, 0xb1b1c879l, 0x5b5bedb6l,
 0x6a6abed4l, 0xcbcb468dl, 0xbebed967l, 0x39394b72l,
 0x4a4ade94l, 0x4c4cd498l, 0x5858e8b0l, 0xcfcf4a85l,
 0xd0d06bbbl, 0xefef2ac5l, 0xaaaae54fl, 0xfbfb16edl,
 0x4343c586l, 0x4d4dd79al, 0x33335566l, 0x85859411l,
 0x4545cf8al, 0xf9f910e9l, 0x02020604l, 0x7f7f81fel,
 0x5050f0a0l, 0x3c3c4478l, 0x9f9fba25l, 0xa8a8e34bl,
 0x5151f3a2l, 0xa3a3fe5dl, 0x4040c080l, 0x8f8f8a05l,

102

 0x9292ad3fl, 0x9d9dbc21l, 0x38384870l, 0xf5f504f1l,
 0xbcbcdf63l, 0xb6b6c177l, 0xdada75afl, 0x21216342l,
 0x10103020l, 0xffff1ae5l, 0xf3f30efdl, 0xd2d26dbfl,
 0xcdcd4c81l, 0x0c0c1418l, 0x13133526l, 0xecec2fc3l,
 0x5f5fe1bel, 0x9797a235l, 0x4444cc88l, 0x1717392el,
 0xc4c45793l, 0xa7a7f255l, 0x7e7e82fcl, 0x3d3d477al,
 0x6464acc8l, 0x5d5de7bal, 0x19192b32l, 0x737395e6l,
 0x6060a0c0l, 0x81819819l, 0x4f4fd19el, 0xdcdc7fa3l,
 0x22226644l, 0x2a2a7e54l, 0x9090ab3bl, 0x8888830bl,
 0x4646ca8cl, 0xeeee29c7l, 0xb8b8d36bl, 0x14143c28l,
 0xdede79a7l, 0x5e5ee2bcl, 0x0b0b1d16l, 0xdbdb76adl,
 0xe0e03bdbl, 0x32325664l, 0x3a3a4e74l, 0x0a0a1e14l,
 0x4949db92l, 0x06060a0cl, 0x24246c48l, 0x5c5ce4b8l,
 0xc2c25d9fl, 0xd3d36ebdl, 0xacacef43l, 0x6262a6c4l,
 0x9191a839l, 0x9595a431l, 0xe4e437d3l, 0x79798bf2l,
 0xe7e732d5l, 0xc8c8438bl, 0x3737596el, 0x6d6db7dal,
 0x8d8d8c01l, 0xd5d564b1l, 0x4e4ed29cl, 0xa9a9e049l,
 0x6c6cb4d8l, 0x5656faacl, 0xf4f407f3l, 0xeaea25cfl,
 0x6565afcal, 0x7a7a8ef4l, 0xaeaee947l, 0x08081810l,
 0xbabad56fl, 0x787888f0l, 0x25256f4al, 0x2e2e725cl,
 0x1c1c2438l, 0xa6a6f157l, 0xb4b4c773l, 0xc6c65197l,
 0xe8e823cbl, 0xdddd7ca1l, 0x74749ce8l, 0x1f1f213el,
 0x4b4bdd96l, 0xbdbddc61l, 0x8b8b860dl, 0x8a8a850fl,
 0x707090e0l, 0x3e3e427cl, 0xb5b5c471l, 0x6666aaccl,
 0x4848d890l, 0x03030506l, 0xf6f601f7l, 0x0e0e121cl,
 0x6161a3c2l, 0x35355f6al, 0x5757f9ael, 0xb9b9d069l,
 0x86869117l, 0xc1c15899l, 0x1d1d273al, 0x9e9eb927l,
 0xe1e138d9l, 0xf8f813ebl, 0x9898b32bl, 0x11113322l,
 0x6969bbd2l, 0xd9d970a9l, 0x8e8e8907l, 0x9494a733l,
 0x9b9bb62dl, 0x1e1e223cl, 0x87879215l, 0xe9e920c9l,
 0xcece4987l, 0x5555ffaal, 0x28287850l, 0xdfdf7aa5l,
 0x8c8c8f03l, 0xa1a1f859l, 0x89898009l, 0x0d0d171al,
 0xbfbfda65l, 0xe6e631d7l, 0x4242c684l, 0x6868b8d0l,
 0x4141c382l, 0x9999b029l, 0x2d2d775al, 0x0f0f111el,
 0xb0b0cb7bl, 0x5454fca8l, 0xbbbbd66dl, 0x16163a2cl};

 private long[] Te4 = {
 0x63636363l, 0x7c7c7c7cl, 0x77777777l, 0x7b7b7b7bl,
 0xf2f2f2f2l, 0x6b6b6b6bl, 0x6f6f6f6fl, 0xc5c5c5c5l,
 0x30303030l, 0x01010101l, 0x67676767l, 0x2b2b2b2bl,
 0xfefefefel, 0xd7d7d7d7l, 0xababababl, 0x76767676l,
 0xcacacacal, 0x82828282l, 0xc9c9c9c9l, 0x7d7d7d7dl,
 0xfafafafal, 0x59595959l, 0x47474747l, 0xf0f0f0f0l,
 0xadadadadl, 0xd4d4d4d4l, 0xa2a2a2a2l, 0xafafafafl,
 0x9c9c9c9cl, 0xa4a4a4a4l, 0x72727272l, 0xc0c0c0c0l,
 0xb7b7b7b7l, 0xfdfdfdfdl, 0x93939393l, 0x26262626l,
 0x36363636l, 0x3f3f3f3fl, 0xf7f7f7f7l, 0xccccccccl,
 0x34343434l, 0xa5a5a5a5l, 0xe5e5e5e5l, 0xf1f1f1f1l,
 0x71717171l, 0xd8d8d8d8l, 0x31313131l, 0x15151515l,
 0x04040404l, 0xc7c7c7c7l, 0x23232323l, 0xc3c3c3c3l,
 0x18181818l, 0x96969696l, 0x05050505l, 0x9a9a9a9al,
 0x07070707l, 0x12121212l, 0x80808080l, 0xe2e2e2e2l,
 0xebebebebl, 0x27272727l, 0xb2b2b2b2l, 0x75757575l,
 0x09090909l, 0x83838383l, 0x2c2c2c2cl, 0x1a1a1a1al,
 0x1b1b1b1bl, 0x6e6e6e6el, 0x5a5a5a5al, 0xa0a0a0a0l,
 0x52525252l, 0x3b3b3b3bl, 0xd6d6d6d6l, 0xb3b3b3b3l,
 0x29292929l, 0xe3e3e3e3l, 0x2f2f2f2fl, 0x84848484l,

103

 0x53535353l, 0xd1d1d1d1l, 0x00000000l, 0xededededl,
 0x20202020l, 0xfcfcfcfcl, 0xb1b1b1b1l, 0x5b5b5b5bl,
 0x6a6a6a6al, 0xcbcbcbcbl, 0xbebebebel, 0x39393939l,
 0x4a4a4a4al, 0x4c4c4c4cl, 0x58585858l, 0xcfcfcfcfl,
 0xd0d0d0d0l, 0xefefefefl, 0xaaaaaaaal, 0xfbfbfbfbl,
 0x43434343l, 0x4d4d4d4dl, 0x33333333l, 0x85858585l,
 0x45454545l, 0xf9f9f9f9l, 0x02020202l, 0x7f7f7f7fl,
 0x50505050l, 0x3c3c3c3cl, 0x9f9f9f9fl, 0xa8a8a8a8l,
 0x51515151l, 0xa3a3a3a3l, 0x40404040l, 0x8f8f8f8fl,
 0x92929292l, 0x9d9d9d9dl, 0x38383838l, 0xf5f5f5f5l,
 0xbcbcbcbcl, 0xb6b6b6b6l, 0xdadadadal, 0x21212121l,
 0x10101010l, 0xffffffffl, 0xf3f3f3f3l, 0xd2d2d2d2l,
 0xcdcdcdcdl, 0x0c0c0c0cl, 0x13131313l, 0xececececl,
 0x5f5f5f5fl, 0x97979797l, 0x44444444l, 0x17171717l,
 0xc4c4c4c4l, 0xa7a7a7a7l, 0x7e7e7e7el, 0x3d3d3d3dl,
 0x64646464l, 0x5d5d5d5dl, 0x19191919l, 0x73737373l,
 0x60606060l, 0x81818181l, 0x4f4f4f4fl, 0xdcdcdcdcl,
 0x22222222l, 0x2a2a2a2al, 0x90909090l, 0x88888888l,
 0x46464646l, 0xeeeeeeeel, 0xb8b8b8b8l, 0x14141414l,
 0xdedededel, 0x5e5e5e5el, 0x0b0b0b0bl, 0xdbdbdbdbl,
 0xe0e0e0e0l, 0x32323232l, 0x3a3a3a3al, 0x0a0a0a0al,
 0x49494949l, 0x06060606l, 0x24242424l, 0x5c5c5c5cl,
 0xc2c2c2c2l, 0xd3d3d3d3l, 0xacacacacl, 0x62626262l,
 0x91919191l, 0x95959595l, 0xe4e4e4e4l, 0x79797979l,
 0xe7e7e7e7l, 0xc8c8c8c8l, 0x37373737l, 0x6d6d6d6dl,
 0x8d8d8d8dl, 0xd5d5d5d5l, 0x4e4e4e4el, 0xa9a9a9a9l,
 0x6c6c6c6cl, 0x56565656l, 0xf4f4f4f4l, 0xeaeaeaeal,
 0x65656565l, 0x7a7a7a7al, 0xaeaeaeael, 0x08080808l,
 0xbabababal, 0x78787878l, 0x25252525l, 0x2e2e2e2el,
 0x1c1c1c1cl, 0xa6a6a6a6l, 0xb4b4b4b4l, 0xc6c6c6c6l,
 0xe8e8e8e8l, 0xddddddddl, 0x74747474l, 0x1f1f1f1fl,
 0x4b4b4b4bl, 0xbdbdbdbdl, 0x8b8b8b8bl, 0x8a8a8a8al,
 0x70707070l, 0x3e3e3e3el, 0xb5b5b5b5l, 0x66666666l,
 0x48484848l, 0x03030303l, 0xf6f6f6f6l, 0x0e0e0e0el,
 0x61616161l, 0x35353535l, 0x57575757l, 0xb9b9b9b9l,
 0x86868686l, 0xc1c1c1c1l, 0x1d1d1d1dl, 0x9e9e9e9el,
 0xe1e1e1e1l, 0xf8f8f8f8l, 0x98989898l, 0x11111111l,
 0x69696969l, 0xd9d9d9d9l, 0x8e8e8e8el, 0x94949494l,
 0x9b9b9b9bl, 0x1e1e1e1el, 0x87878787l, 0xe9e9e9e9l,
 0xcecececel, 0x55555555l, 0x28282828l, 0xdfdfdfdfl,
 0x8c8c8c8cl, 0xa1a1a1a1l, 0x89898989l, 0x0d0d0d0dl,
 0xbfbfbfbfl, 0xe6e6e6e6l, 0x42424242l, 0x68686868l,
 0x41414141l, 0x99999999l, 0x2d2d2d2dl, 0x0f0f0f0fl,
 0xb0b0b0b0l, 0x54545454l, 0xbbbbbbbbl, 0x16161616l};

 public long Te0(byte b)
 {
 return Te0[b & 0xff];
 }

 public long Te1(byte b)
 {
 return Te1[b & 0xff];
 }

 public long Te2(byte b)
 {

104

 return Te2[b & 0xff];
 }

 public long Te3(byte b)
 {
 return Te3[b & 0xff];
 }

 public long Te4(byte b)
 {
 return Te4[b & 0xff];
 }

 public long MTe0(byte b)
 {
 return MTe0[b & 0xff];
 }

 public long MTe1(byte b)
 {
 return MTe1[b & 0xff];
 }

 public long MTe2(byte b)
 {
 return MTe2[b & 0xff];
 }

 public long MTe3(byte b)
 {
 return MTe3[b & 0xff];
 }

 public long MTe4(byte b)
 {
 return MTe4[b & 0xff];
 }

 public long MOpt(byte b)
 {
 return MOpt[b & 0xff];
 }

 // Routines to access table entries
 public byte MSBox(byte b)
 {
 return MS[b & 0xff];
 }

 // Routines to access table entries
 public byte M(byte b)
 {
 return M[b & 0xff];
 }

 public int maskOpt()
 {

105

 return maskOpt;
 }

 public int maskNorm()
 {
 return maskNorm;
 }

 // Routines to access table entries
 public byte SBox(byte b)
 {
 return S[b & 0xff];
 }

 public byte invSBox(byte b)
 {
 return invS[b & 0xff];
 }

 public byte Rcon(int i)
 {
 return powX[i-1];
 }

 // FFMulFast: fast multiply using table lookup
 public byte FFMulFast(byte a, byte b)
 {
 int t = 0;;
 if (a == 0 || b == 0) return 0;
 t = (L[(a & 0xff)] & 0xff) + (L[(b & 0xff)] & 0xff);
 if (t > 255) t = t - 255;
 return E[(t & 0xff)];
 }

 // FFMul: slow multiply, using shifting
 public byte FFMul(byte a, byte b)
 {
 byte aa = a, bb = b, r = 0, t;
 while (aa != 0)
 {
 if ((aa & 1) != 0)
 r = (byte)(r ^ bb);
 t = (byte)(bb & 0x80);
 bb = (byte)(bb << 1);
 if (t != 0)
 bb = (byte)(bb ^ 0x1b);
 aa = (byte)((aa & 0xff) >> 1);
 }
 return r;
 }

 // loadE: create and load the E table
 private void loadE()
 {
 byte x = (byte)0x01;
 int index = 0;
 E[index++] = (byte)0x01;

106

 for (int i = 0; i < 255; i++)
 {
 byte y = FFMul(x, (byte)0x03);
 E[index++] = y;
 x = y;
 }
 }

 // loadL: load the L table using the E table
 private void loadL()
 { // careful: had 254 below several places
 int index;
 for (int i = 0; i < 255; i++)
 {
 L[E[i] & 0xff] = (byte)i;
 }
 }

 // loadS: load in the table S
 private void loadS()
 {
 int index;
 for (int i = 0; i < 256; i++)
 S[i] = (byte)(subBytes((byte)(i & 0xff)) & 0xff);
 }

 // loadInv: load in the table inv
 private void loadInv()
 {
 int index;
 for (int i = 0; i < 256; i++)
 inv[i] = (byte)(FFInv((byte)(i & 0xff)) & 0xff);
 }

 // loadInvS: load the invS table using the S table
 private void loadInvS()
 {
 int index;
 for (int i = 0; i < 256; i++)
 {
 invS[S[i] & 0xff] = (byte)i;
 }
 }

 // loadPowX: load the powX table using multiplication
 private void loadPowX()
 {
 int index;
 byte x = (byte)0x02;
 byte xp = x;
 powX[0] = 1; powX[1] = x;
 for (int i = 2; i < 15; i++)
 {
 xp = FFMul(xp, x);
 powX[i] = xp;
 }
 }

107

 // FFInv: the multiplicative inverse of a byte value
 public byte FFInv(byte b)
 {
 byte e = L[b & 0xff];
 return E[0xff - (e & 0xff)];
 }

 // ithBIt: return the ith bit of a byte
 public int ithBit(byte b, int i)
 {
 int m[] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80};
 return (b & m[i]) >> i;
 }

 // subBytes: the subBytes function
 public int subBytes(byte b)
 {
 //byte inB = b;
 int res = 0;
 if (b != 0) // if b == 0, leave it alone
 b = (byte)(FFInv(b) & 0xff);
 byte c = (byte)0x63;
 for (int i = 0; i < 8; i++)
 {
 int temp = 0;
 temp = ithBit(b, i) ^ ithBit(b, (i+4)%8) ^ ithBit(b, (i+5)%8) ^
 ithBit(b, (i+6)%8) ^ ithBit(b, (i+7)%8) ^ ithBit(c, i);
 res = res | (temp << i);
 }
 return res;
 }

 private void genMTablesOrigAES() // for original S Box
 {
 Random randGen = new Random(System.currentTimeMillis());
 maskNorm = (byte)(Math.abs(randGen.nextInt()) & 0x000000ff);
 byte tmpByte;

 System.out.println("mask1SBox="+Integer.toHexString(maskNorm));

 for (int i = 0; i < 256; i++)
 {
 tmpByte = (byte) (randGen.nextInt() & 0x000000ff);
 MS[i] = (byte)(S[i] ^ tmpByte);
 M[i] = (byte)(tmpByte ^ maskNorm);
 }
 }

 private void genMTablesOptAES() // for optimized S Boxes
 {
 Random randGen = new Random(System.currentTimeMillis());
 maskOpt = Math.abs(randGen.nextInt());
 System.out.println("mask="+Integer.toHexString(maskOpt));
 int tmp;

108

 for (int i = 0; i < 256; i++)
 {
 tmp = randGen.nextInt();
 MTe0[i] = Te0[i] ^ tmp;
 MTe1[i] = Te1[i] ^ tmp;
 MTe2[i] = Te2[i] ^ tmp;
 MTe3[i] = Te3[i] ^ tmp;
 MTe4[i] = Te4[i] ^ tmp;
 MOpt[i] = tmp ^ maskOpt; // use M0 for the case of only 1 M table
 }
 }
}

public class Copy
{
 private static final int Nb = 4;

 // copy: copy in to state
 public static void copy(byte[][] state, byte[] in)
 {
 int inLoc = 0;
 for (int c = 0; c < Nb; c++)
 for (int r = 0; r < 4; r++)
 state[r][c] = in[inLoc++];
 }

 // copy: copy state to out
 public static void copy(byte[] out, byte[][] state)
 {
 int outLoc = 0;
 for (int c = 0; c < Nb; c++)
 for (int r = 0; r < 4; r++)
 out[outLoc++] = state[r][c];
 }
}

