
Code Extration Algorithms whih Unify Sliing and ConeptAssignmentMark Harman1 Niolas Gold2 Rob Hierons1 Dave Binkley31Brunel University 2UMIST 3Loyola CollegeUxbridge, Middlesex Manhester BaltimoreUB8 3PH, UK. M60 1QD, UK. MD 21210-2699, USA.Keywords: sliing, onept assignment, soure ode extrationAbstratOne approah to reverse engineering is to par-tially automate subomponent extration, improve-ment and subsequent reombination. Two previouslyproposed automated tehniques for supporting thisativity are sliing and onept assignment. How-ever, neither is diretly appliable in isolation; sliingriteria (sets of program variables) are simply too lowlevel in many ases, while onept assignment typi-ally fails to produe exeutable subomponents.This paper introdues a uni�ation of sliing andonept assignment whih exploits their ombined ad-vantages, while overoming their individual weak-nesses. Our `onept slies' are extrated usinghigh level riteria, while produing exeutable sub-programs. The paper introdues three ways of om-bining sliing and onept assignment and algorithmsfor eah. The appliation of the onept sliing al-gorithms is illustrated with a ase study from a large�nanial organisation.1 IntrodutionFor program omprehension and reverse engineer-ing it is important to have automated tehniquesfor extrating exeutable subomponents aordingto high level extration riteria. These omponentsneed to be semantially related to the original (sothat they an be exeuted in isolation), while theriteria for seletion may need to identify disparatesetions of diverse ode whih will have to be mar-ried together. Therefore, the problem is to be able toautomatially produe programs whih answer ques-tions of the form: Given an original program, on-strut the simplest program that, for example per-forms the same master �le update operation or whihloses down the reator under the same onditions.Program sliing and onept assignment are auto-mated soure ode extration tehniques that take a

riterion and program soure ode as input and yieldparts of the program's soure ode as output. There-fore, they suggest themselves as natural andidatesolutions to this problem. Sliing has the advantagethat the extrated ode it produes an be exeutedas a program in its own right, but the disadvantagethat the riterion must be expressed at the low levelof program variables. Conept assignment has theadvantage that the extration riterion is expressedat just the right level (in terms of onepts suh as`master �le', `error reovery' and `log update'), butthe disadvantage that the ode fragments it extratsannot be ompiled and exeuted as a separate pro-gram. Thus, eah tehnique overomes the diÆultyassoiated with the other.This paper shows how sliing and onept assign-ment an be ombined to produe better results thaneither is apable of individually. The ontributionsof this paper an be summarised as follows.� A framework for ombining Sliing and ConeptAssignment is introdued� Algorithms are introdued for{ Exeutable Conept Sliing{ Key Statement Analysis{ Conept Dependeny Analysis� The appliation of the onept sliing approahto reverse engineering is illustrated with a asestudyThe rest of the paper is organised as follows. Se-tion 2 briey reviews sliing and onept assignmentto make the paper self-ontained. It an safely beskipped by a reader familiar with both tehniques.Setion 3 presents a framework for unifying sli-ing and onept assignment, suggesting three newtehniques whih ombine sliing with onept as-signment. Algorithms for these three tehniques:1

Mirrored By:

www.siliconinvestigations.com

For more information, call us - 920-955-3693

Exeutable Conept Sliing (ECS), Key StatementAnalysis (KSA) and Conept Dependeny Analysis(CDA) are introdued in setions 4, 5 and 6 respe-tively. Setion 7 presents a ase study involving a�nanial payment system, whih illustrates the useof the onept sliing algorithms introdued in se-tions 4, 5 and 6. Setion 8 onludes and Setion 9gives diretions for future work.2 BakgroundThis setion provides some bakground, de�nitionsand notation for sliing and onept assignmentwhih are used in the remainder of the paper.2.1 SliingProgram sliing [31℄ is de�ned with respet to a `sli-ing riterion'. Sliing uses dependene analysis toisolate those parts of a program that potentially af-fet the sliing riterion.Traditionally `parts of the program to be isolated'have been restrited to statements and prediatesand the sliing riterion has been de�ned in termsof a set of variables and a point at whih their val-ues are of interest. More reent work has extendedtraditional sliing by onsidering novel sliing rite-ria involving onditions and test adequay properties[5, 15℄. The tehniques for isolation of statementshave also broadened from statement deletion to al-low for more general transformation [4, 12, 30℄.This paper will be onerned solely with syntax-preserving stati sliing, whih will be used both tore�ne and to extend the results of onept assign-ment. In all ases, slies will be onstruted for a setof nodes of a program's Control Flow Graph (CFG).This means that the sliing riterion will simply bea set of n statements fs1; : : : ; sng.De�nition 1 (Slie)A slie of a program p for the sliing riterionfs1; : : : ; sng is an exeutable subprogram, s, on-struted from p by statement deletion, suh thats behaves identially to p with respet to the se-quene of values omputed at eah of the statementsin fs1; : : : ; sng. The slie of a program p w.r.t a setof statements S will be denoted Slie(p; S).This de�nition of a slie is essentially the exe-utable version of the de�nition adopted by the Sys-tem Dependene Graph approah of Horwitz et al.[16℄. Typially, work on the System DependeneGraph (SDG) de�nes it to ontain a set of `�nal use'verties for eah variable. The SDG is so-onstrutedto guarantee the existene of suh a vertex for eahvariable. This allows slies to be onstruted for avariable in terms of its �nal use vertex.

De�nition 2 (Final Use Vertex)FinalUse(p; v) is the �nal use vertex of variable v inprogram p.The dependene graph itself an be useful inanalysing the distane between a slie node and someother node in the slie.De�nition 3 (SDG Distane)Given statements s and s0 of a program p, the dis-tane, Dist(p; s; s0) is the length of the shortest pathbetween s and s0 in the SDG of p. If there is no pathfrom s and s0 in the SDG of p, then Dist(p; s; s0) isunde�ned.2.2 Conept AssignmentThe onept assignment1 problem is de�ned as \aproess of reognising onepts within a omputerprogram and building up an `understanding' of theprogram by relating reognised onepts to portionsof the program, its operational ontext and to one an-other [3℄." It an be undertaken by intelligent agents(tools), with three distint approahes being adopted[3℄:1. Highly domain spei�, model driven, rule-based question answering systems that dependon a manually populated database desribingthe software system. This approah is typi�edby the Lassie system [7℄.2. Plan driven, algorithmi program understandersor reognisers. Two examples of this typeare the Programmer's Apprentie [28℄, andGRASPR [32℄.3. Model driven, plausible reasoning systems. Ex-amples of this type inlude DM-TAO [3℄, IRENE[17℄, and HB-CA [9, 10℄.Biggersta� et al. laim that systems using ap-proahes 1 and 2 are good at ompletely deriv-ing onepts within small-sale programs but annotdeal with large-sale programs due to overwhelmingomputational growth. Approah 3 systems an eas-ily handle large-sale programs sine their ompu-tational growth appears to be linear in the lengthof the program under analysis but they su�er fromapproximate and impreise results [3℄.We are onerned with plausible reasoning systems(ategory 3 above) and all referenes to onept as-signment in this paper should be taken as referringto this kind of system. Plausible reasoning systemsare of partiular interest beause they are salable1Note: onept assignment is a wholly di�erent tehnologyfrom formal onept analysis (FCA) (sometimes just alled`onept analysis').2

and are theoretially apable of assigning higher-level onepts than some of the other approahes.The assignment is based on the evidene available inthe ode being analysed from whih a `best guess' istaken; reasoning is thus based on plausibility ratherthan dedution. In addition to the ommon applia-tion of onept assignment in helping maintainers toomprehend programs, Cimitile et al. [6℄ have sug-gested it as a way of validating the adequay of aandidate riterion when identifying suitable mod-ules for reuse.Hypothesis-Based Conept Assignment (HB-CA)[9, 11℄ is one of the most reent examples of aplausible-reasoning onept assignment approah. Itdeals with the part of the onept assignment prob-lem that involves relating reognised onepts to por-tions of a program. HB-CA uses a simple knowledgebase to enode the relationships between oneptsand potential evidene for them in soure ode. It isthis approah that we propose to ombine with pro-gram sliing. The following de�nition introdues thenotation we will use to denote onept assignment.De�nition 4 (Conept)A onept , named n, of a program p is onstrutedwith respet to a domain model D. The onept on-sists of a tagged ontiguous sequene of ode from p,for whih there is evidene (aording to D) that thesequene implements the onept named n. For aonept , Tag() refers to the name of the onept, while Statements() refers to its statements. Fora program p and domain model D, Conepts(p;D)refers to the set of all onepts assigned to p aord-ing to D.Figure 1 shows a fragment of a domain model(whih will be used in the ase study in Setion 7). Ina domain model, onepts are lassi�ed into ationsand objets and may be omposed or speialised.Eah onept has a number of indiators whih rep-resent the potential soure ode evidene for the on-ept. For every piee of soure ode evidene that isfound, a hypothesis is generated for the appropriateonept. Segments (ontiguous groups of hypothe-ses de�ning a ontiguous region of soure ode) areformed from the resulting list of hypotheses usingoneptual density and program syntax to de�ne theboundaries. The dominant onept (i.e. the one forwhih there is most evidene) in eah segment is as-signed to the appropriate region of soure ode.3 A Framework for Unifying Sli-ing and Conept AssignmentThis setion presents a framework of notation andrequirements for developing a ombined sliing and

onepts approah. The term `onept slie' will beused to refer to the result of any ombination of sli-ing and onept assignment. Figure 2 depits, inoverview, the three types of onept slie onsideredin this paper.3.1 Exeutable Conept Sliing (ECS)Exeutable Conept Sliing (ECS) is the basi start-ing point for the approah we advoate. An ECS isformed using sliing to augment the results of on-ept assignment to make the onept an exeutablesub-program.More formally, an algorithm for ECS is a funtionwhih takes a program, p, and a domain model, D,and produes a set of exeutable sub-omponents,one per onept in the program p aording to D.Eah returned onept must be exeutable and, whenexeuted, the omputation aptures the omputationon the assoiated onept of p w.r.t. D. In formingan ECS, the set of statements tagged with the on-ept name may no longer be ontiguous.The end of the segment identi�ed in onept as-signment will be treated as an end of program ver-tex. For example, in the ase of COBOL, this an beahieved by inserting a STOP RUN statement at theend of the segment of ode assigned to the onept.The ECS will be further re�ned using key state-ment analysis, as desribed in the next setion.3.2 Key Statement Analysis (KSA)Given a onept (and/or onept slie), some state-ments will be more important than others; they willontribute more to the omputation embodied bythe onept. The more important statements areregarded as the `key' statements of the onept. KeyStatement Analysis (KSA) is an analysis step whihaims to determine the key statements in a onept.The approah an be applied to both onepts andto onept slies.More formally, an algorithm for KSA is a funtionwhih takes a program and a onept assigned withinit, and returns a funtion whih desribes the rela-tive weight of eah statement in the onept. Theweight is represented as a funtion, form statements,Statement, to real numbers, IR. If the funtionreturned is f then f(s), denotes the weight of state-ment sA simple approah identi�es a subset of the state-ments as being key. A more elaborate approah, as-signs weights to eah statement, indiating relativekeyness. These weightings will be real numbers inthe range 0 to 1 and so the simple ase is merely aspeial ase in whih the only two outomes are 0and 1.3

“Mortgage”

Mortgage

Interest

Interest

Calculate

Calculate Interest

“Subtract”

“Interest”

“Outstanding”.

“Calculate” “Divide”

Key

Indicates

Specialisation

Composition

Concept

Indicator

Composite Concept

Figure 1: A Fragment of a Domain Model3.3 Conept Dependeny Analysis (CDA)To perform onept assignment, an initial domainmodel is reated by the software engineer (basedon their experiene). This model ought to be im-proved as the method is used. Unfortunately, usingtraditional onept assignment, there is no guidaneto indiate whih onepts our together frequentlynor to eluidate the inter-onept relationships whihevolve as the analysis proess iterates. Therefore,the model is improved only by serendipity and in apoorly de�ned ad-ho manner. A learly de�ned andtool-assisted feedbak approah is required to sup-port the disiplined and systemati evolution of themodel, failitating proess improvement over sues-sive analyses.More formally, an algorithm for Conept Depen-deny Analysis (CDA) takes a program and a domainmodel and produes a onept dependene graph.A onept dependene graph is a direted graph,in whih the nodes are onepts and the edges areweighted. Thus, formally, the onept dependenygraph is a set of triples, suh that triple (; 0; w) isin the graph i� there is an edge from onept to 0with weight w. The onept graph is thus a weightedrelation on the set of onepts.3.4 Prinipal VariablesIn order to form onept slies for KSA and CDA itwill be neessary to determine the prinipal variablesof an arbitrary set of statements. The prinipal vari-ables are those whih might be onsidered to be theresult of the set of statements.

As Bieman and Ott point out in their work onslie-based ohesion measurement [18, 25℄, the dei-sion as to what variables are `prinipal' is somewhatarbitrary; hanging it an, of ourse, alter the resultsof the algorithms upon whih it is based. Therefore,the de�nition of what onstitutes a prinipal variableshould be treated as a parameter of the onept sli-ing approah advoated here. The de�nition belowwill be used as a working de�nition for the ase studyin Setion 7, and is derived from Bieman and Ott.De�nition 5 (Prinipal Variable)A variable v in a set of statements S is a prinipalvariable i� it is either� global and assigned in S� all-by-referene and assigned in S� the parameter to an output statement of SGiven a set of statements S, PV (S) will be usedto denote the set of prinipal variables of S.4 ECS AlgorithmThe ECS algorithm is presented in Figure 3. Thealgorithm is straightforward. The statements of theonept form the set of statements for the sliingriterion. Sliing on these statements adds to theonept, all statements of the original program re-quired to ensure that the onept statements faith-fully mimi (in the onept slie) their behaviour inthe original program.4

Name Purpose Type Potential AppliationsExeutable Conept Sli-ing (ECS) To form an exeutablesub-omponent Inter-Conept Analysis Reuse and re-engineeringKey Statement Analysis(KSA) To re�ne a onept Intra-Conept Analysis Comprehension and re-verse engineeringConept DependenyAnalysis (CDA) To identify inter-oneptrelationships Inter-Conept Analysis Domain modelimprovementFigure 2: Overview of the Conept Sliing Frameworkfuntion ECS(Program p, DomainModel D)returns: set of Programlet f1; : : : ; ng = Conepts(p;D)for eah i 2 f1; : : : ; nglet ECSi = Slie(p; Statements(i))let Tag(ECSi) = Tag(i)endforreturn fECS1; : : : ; ECSngFigure 3: The Exeutable Conept Sliing Algorithm5 KSA AlgorithmA simple KSA algorithm is presented in Figure 4.The funtion KSABO takes a program and a on-ept assigned within it and returns a funtion whihdesribes the relative weight of eah statement in theonept. In this ase, the returned result is either 0or 1, with 1 signifying that the statement is a keystatement and 0 signifying that it is not.The idea is to use the set of prinipal variables inthe onept to form a set of slies. The intersetion ofthese slies ontains the statements whih ontributeto the omputation of every prinipal variable; inother words, the key statements of the onept.We all this the `BiemanOtt-style' algorithm, be-ause it is inspired by Bieman and Ott's work onmeasuring ohesion using sliing [2, 18, 25, 26, 27℄.Spei�ally, the intersetion of slies on prinipalvariables is the set used to ompute the `Tightness'metri introdued by Ott and Thuss [26℄. Tightnesswas later developed into a theory of ohesion mea-surement based on sliing [2, 25℄.An alternative KSA algorithm is presented in Fig-ure 5. In this approah, the returned value assoi-ated with a statement is a real number, rather thansimply a value in f0; 1g. The value assigned to astatement represents the diretness of dependenebetween it and the prinipal variables of the on-ept. The weight for statement s is omputed as thelength of the shortest path from s to a �nal use ver-tex of a prinipal variable, normalized with respet

funtion KSABO(Program p, ConeptSlie)returns: funtion from Statement to f0; 1gfor eah variable vi in PV ()let si = Slie(p; fFinalUse(Statements(); vi)g)endforlet Tight = Ti silet KS = Statements() \ T ightreturn �x: if x 2 KS then 1 else 0Figure 4: Key Statement Analysis `BiemanOtt' Styleto the length of the longest ayli path in the pro-gram's SDG2, suh that statements with KSA valuesloser to 1 are more `key' and those with KSA val-ues loser to 0 are `less key'. This gives a real valueweighting between 0 and 1 for eah statement in theonept. The algorithm builds up the funtion F tobe returned, adding a maplet for eah statement siwhih maps si to its weight.Observe that, beause Dist(s; s0; p) is unde�ned ifthere is no path from s to s0 in the SDG of p, theweight of a statement is also unde�ned when there isno path from it to the �nal use vertex of any prinipalvariable. For any suh an `unonneted' statement,the unde�nedness of the weight will alert the engi-neering to a possible anomaly; why is suh a state-ment in a onept if it has no e�et on any prinipalvariable? We all this algorithm the `BallEik' algo-rithm beause it is inspired by Ball and Eik's workon the SeeSlie projet[1℄.6 CDA AlgorithmAn algorithm for produing a weighted Conept De-pendeny Graph is presented in Figure 6. Weightingswill be alloated aording to the amount of ompu-2In the algorithm, the SDG is used, but there may be analy-ses for data-intensive programs, for whih it would be edifyingto onsider the replaement of the SDG with the Data Depen-dene Graph (DDG) and (for ontrol sensitive onepts) touse the Control Dependene Graph (CGD).5

funtion KSABE(Program p, ConeptSlie)returns: funtion from Statement to IRlet F = fglet N be the longest ayli path in the SDG of pfor eah si in Statements()for eah vj in PV ()let dij = Dist(p; si; F inalUse(Statements(); vj))endforlet Di = minj dijlet F = F [fsi 7! N�DiN gendforreturn FFigure 5: Key Statement Analysis `BallEik' Styletation (normalized by onept size) whih one on-ept ontributes to the omputation of another. Toompute this we use an approah based on the slie-based oupling metri of Harman et al. [14℄. Thisapproah is a oupling metri, similar to the ohesionmetris of Bieman and Ott [25℄.The metri is omputed using the prinipal vari-ables of a onept. The union of slies (restritedto onept 0) is then formed. This is the part of0 whih ontributes to the omputation of the prin-ipal variables of . The weight of the edge from0 to is onsidered to be the relative amount of 0(normalized by the size of 0) whih lies in the unionof slies. This normalized `amount of omputation'forms a rude way of determining the amount of 0whih ontributes to the omputation denoted by .The algorithm starts with an empty graph (G) andgoes through eah onept (the i loop) adding inweightings from eah of the other onepts (the jloop) in the graph. For eah pair of onepts, theunion of slies on prinipal variables, Comp, is om-puted and this is used to determine the ontribution,Cont, that one onept makes to the other. This on-tribution is reformulated into a metri value between0 and 1, by alulating its size relative to the size ofthe whole ontributing onept.7 A Case StudyThis setion presents a ase study whih illustratesthe appliation of the four algorithms introdued inthe paper. The program onerned (see Figure 8) isbased on one drawn from a large �nanial servies or-ganisation and, among other things, alulates mort-gage repayments. In the example, we have used alibrary of 25 onepts and their assoiated evideneto generate onept bindings and segments.Suppose that the mortgage produts of the organi-

funtion CDA(Program p, DomainModel D)returns: ConeptGraphlet G = fgfor eah i 2 Conepts(p;D)for eah j 2 Conepts(p;D) (j 6= i)for eah variable vk in PV (j)let sk = Slie(p; fFinalUse(j; vk)g)endforlet Comp = Sk sklet Cont = Comp \ Statements(i)let M = jContjjijlet G = G [f(i; j ;M)gendforendforreturn GFigure 6: The Conept Dependeny Analysis Algo-rithmsation are to be overhauled. The legay system whihomputes mortgage payments is to be reverse andre-engineered. Spei�ally, onsider the senario inwhih an engineer is looking to loate the ode whihalulates mortgage payments to re-use it (possiblyin an amended form) in the re-engineered system.Thus, the reverse engineer is seeking, initially, toretain the ode for alulating mortgage interest,while disarding the remainder of the program. Anatural step would be to identify the ode whihimplements mortgage alulations. Unfortunatelypure sliing annot help unless the engineer knowswhih variables are important for this omputation.The engineer may be only partially familiar with theode and, therefore, unable to selet a suitable vari-able or set of variables. Conept assignment anbe used to produe a set of ontiguous statementsfor whih there is evidene that the ode performsations relating to mortgage interest, but the en-gineer annot simply extrat and reuse this ode,sine the ode sequene is not an exeutable sub-program. However, by forming the ECS for theCalulate:MortgageInterest onept the reverseengineer an extrat the ode of interest as a exe-utable sub-program.Seleting the `alulate mortgage interest' oneptprodues the onept highlighted by light shading inthe left-hand olumn of Figure 8. Figure 1 depitsthe fragment of the domain model used to loate thisonept. Using the algorithm in Figure 3 the ECSfor alulate mortgage interest additionally identi�esthe boxed lines shown in the �gure. Notie that theline of odeMOVE '010' TO APS-RECORD-IN.6

is not in the ECS, even though it assigns a valueto one of the variables (APS-RECORD-IN) referenedby the onept. This is beause the value assigned isimmediately overwritten by the PERFORM of the odefor C00-READ-APS.The reverse engineer might also analyse the on-ept using Key Statement Analysis. The prinipalvariables of the onept are:W-RED-INT-4W-RED-INTUsing the BiemanOtt style KSA algorithm (Fig-ure 4), the intersetion of slies for these twovariables onsists of the ode whih omputesW-RED-INT-4, sine this ode is a subset of the odewhih omputes W-RED-INT. We might think of thisanalysis as revealing a sub-onept (the unroundedresult) within the alulate mortgage onept.Now, suppose instead of applying KSA to the on-ept, the reverse engineer, instead, hooses to applyit to the ECS. The prinipal variables of the ECSare: W-RED-INT-4OUT-OUTSTANDINGW-RED-INTAPS-RECORD-INFor these four variables, the intersetion of the or-responding slies (Tight) is empty, indiating that nostatements are key in the ECS aording to the Bie-manOtt style algorithm. This information is useful,beause it indiates that there is no ode in the ECSwhih is germane to all of the omputation. This sug-gests that there may be more than one onept im-plemented within the boundaries identi�ed by ECS.In this ase, the ECS happens to ontain a largepart of the Read:APSReord onept and this shouldprobably be separated out. (The possibility of mul-tiple onept binding is disussed briey as an issuefor future work.)At this point, the reverse engineer might hooseto try KSA with a slightly di�erent set of prin-ipal variables, based upon the observation thatAPS-RECORD-IN is an obvious `odd one out'; it islearly an input variable (even though it is bothglobal and assigned and, therefore, a `prinipal vari-able' aording to De�nition 5). For the remain-ing three variables, the KSA highlights preiselythe omputation on OUT-OUTSTANDING. That is, thekey statements identi�ed are the three boxed state-ments of the setion S10-HOLIDAY-CHECK. This sig-ni�es that the ag APS-HOL-MONTH is ruial. Hav-ing observed this, the reverse engineer might hekto see what the ag APS-HOL-MONTH denotes. A lit-tle (human) analysis will reveal that this feature ofthe system implements `payment holidays'. This is

a produt feature aimed at inreasing take up andmaking the produt more attrative. It allows thelient to skip a payment for one month, by extend-ing the period of payments by one month.Of ourse, in the post-overhaul set of produts,the payment holiday feature may not be inluded(or it may be inluded but behave di�erently). Theidenti�ation of the mortgage holiday omputationas a set of key statements of the onept alerts thereverse engineer to the importane of this ode indetermining the mortgage payments and identi�esthe setion of ode whih needs to be onsidered.In Setion 5 an alternative, and more �ne-grained,KSA algorithm was introdued. This approah usesdistane (in the SDG) from the �nal use verties ofprinipal variables to determine a weight for a state-ment, giving a relative measure of keyness. To seehow this works, onsider the onept for mortgagepayment. The ode segment for the onept is utout and depited in Figure 7, along with its CFG andthe orresponding SDG for the two prinipal vari-ables.Dependene is traed bakward from the �nal useverties for the two prinipal variables W-RED-INT-4and W-RED-INT. The longest ayli path in the SDGis 6 nodes long (from the �nal use of W-RED-INT, to 7,6, 2, 5, 4). Nodes 7 and 6 are only a single edge awayfrom a �nal use and so the shortest path is length 2.Therefore both nodes reeive a KSA value of 46 . Theshortest path from nodes 5, 2 and 1 is 3 nodes longand so they reeive a KSA value of 36 . Node 4 is next,with a shortest path of length 4 and a KSA value of26 and �nally node 3 has a KSA value of 16 .The values in themselves are largely immaterial;we an, at best, be measuring on an ordinal sale of`diretness of dependene' [29℄. What is importantis the order they introdue on nodes. The most keystatements are those whih de�ne the values of in-terest (nodes 6 and 7). The next most key are thosewhih diretly ontrol the nodes whih de�ne the val-ues of interest and those whih feed data diretly tothem. As we move further away from the �nal useverties, we reah statements whih have a progres-sively less diret impat upon the omputation of the�nal value of the prinipal variables. It is this obser-vation whih motivates the determination of `relativekeyness' using the `BallEik' style approah.Finally, suppose that the reverse engineer has ex-trated several onepts3. One of the other oneptswhih is identi�ed is the Write:APSReord oneptshown in the darker shading in the top right-handolumn of Figure 8.The reverse engineer may be interested in the re-lationship between this onept and the alulate3Applying HB-CA to this example atually reveals 10 on-epts, but there is insuÆient spae here to disuss them allin detail.7

1 PERFORM S10-HOLIDAY-CHECK.A00-010.* READ APS RECORD2 PERFORM C00-READ-APS.3 IF APS-EOF = END-OF-FILEGO TO A00-090.* CHECK FOR HORIS4 IF APS-HORIS NOT = 'AH'GO TO A00-080.* CHECK FOR MORTGAGE INTEREST5 IF APS-M-INT = ZEROESGO TO A00-080.A00-020.* CALCULATE NEW REDUCED MORTGAGE INTEREST6 COMPUTE W-RED-INT-4 =OUT-OUTSTANDING - (W-TAX-RATE * OUT-OUTSTANDING).7 COMPUTE W-RED-INT ROUNDED = W-RED-INT-4 + 0.STOP RUN.
1

stop

start

2

3

4

5

6

7 W−RED−INT−4
Final Use Final Use

W−RED−INT

4 5

3

21

6

7

Control Dependence

Data DependenceConept for Calulate Mortgage Payment Control Flow Graph (CFG) System Dependene Graph (SDG)Figure 7: Exeutable Conept Slie for Calulate:MortgageInterestmortgage interest onept. Suh a relationship isuseful in re�ning the domain model, whih ontainsinter-onept relationships. It also provides a rudeform of assessment of the impat of hanges to oneonept upon another and the level of `feature inter-ation' between onepts. The prinipal variables ofthe `write APS reord' onept are:APS-RECORD-OUTCHECKING-SLIPUsing the CDA algorithm of Figure 6, the slieon these two variables ontains only one line of thealulate mortgage interest onept:PERFORM C00-READ-APSIn omputing the relative weight of the edge fromthe alulate mortgage interest onept to the `writeAPS reord' onept, we fae the familiar issue ofhow to `ount' lines of ode [8, 29℄. We have hosen toadopt the (relatively) unontroversial step of ount-ing Non Comment Soure Lines (NCSL). However,as with the determination of prinipal variables, thishoie is a parameter to our approah and is adoptedhere merely for illustration. There are nine NCSLsin the alulate mortgage interest onept and so theweight of the edge from the alulate mortgage in-terest onept to the `write APS reord' onept is19 .We have already omputed the slie for the prini-pal variables of the alulate mortgage interest on-ept. The slie was used to form the ECS earlier andonsists of the additional boxed lines in Figure 8.We an see that three of these boxed lines are in the`write APS reord' onept. However, only one ofthem is a NCSL, while there are eight NCSLs in to-tal in the `write APS reord' onept. This gives the

weighting of the relationship from the `write APSreord' onept to the alulate mortgage interestonept as 18 .In themselves these �gures are relatively meaning-less. However, by omputing similar weights for allthe onepts in the system we obtain a weighted on-ept dependene graph whih an be used to re�neour understanding of the domain model and ould,for example, form the input to a lustering tool suhas Bunh [19, 21, 23℄.8 ConlusionThis paper has shown how onept assignment andsliing an be ombined to perform uni�ed soureode extration, whih extrats ode identi�ed by aonept assignment riterion.The approah has the advantage (over pure on-ept assignment) that the ode extrated is exe-utable, beause of the use of sliing to augment theresults of onept assignment. It also has the advan-tage over sliing that the riterion for extration isexpressed at a high level in terms of domain spei�and `meaningful' onepts suh as `master �le' and`update reord'. By ontrast, pure sliing an onlyextrat subprograms based upon low level riteria |sets of variables.The paper introdued an algorithm for ExeutableConept Sliing (ECS), two algorithms for KeyStatement Analysis (KSA) and an algorithm forConept Dependene Analysis (CDA). The applia-tion of these algorithms to reverse engineering wasdemonstrated using a ase study based on a Cobolmortgage alulation program taken from a large �-nanial servies ompany.8

9 Future WorkThis paper has introdued novel de�nitions, nota-tion and ideas for unifying onept assignment andsliing. It has presented algorithms and illustratedtheir appliation, but there remains muh work tobe done in order to unlok the full potential of theuni�ed approah.9.1 Multiple Conept BindingCurrently, HB-CA assumes that there is only a singleonept represented in any setion of ode. This isunrealisti, but it makes the problem more tratable.KSA provides a possible vehile to analyse the stru-ture of a onept to identify potential split points sothat the possible layering of multiple onepts withina rejoin of ode an be onsidered.9.2 Extending Conept BoundariesThe plausible reasoning approah to onept assign-ment has been shown to produe good results [9℄,but, by its very nature, annot be guaranteed to iden-tify the orret onept extent in the ode. We haveused bakward sliing to �nd the ode neessary tomake the onept exeutable. However, if HB-CAhas missed some subsequent statements, whih onlyget exeuted after the identi�ed ode has been ex-euted, then these statements will form neither apart of the onept nor of the exeutable oneptslie. This does not mean that the ECS will bewrong; it simply means that it will apture only asub-omponent of the omputation of the onept.To apture the full omputation, it may be possibleto augment the results of bakward sliing with someform of forward sliing [16℄.9.3 Conept Clustering AnalysisConept Dependeny Analysis produes a weightedgraph of onepts, with the aim of identifying inter-onept relationships. However, a question remains:how an we use the onept dependene graph todetermine whih onepts are related? This prob-lem is very similar to the software modularization orlustering problem [13, 19, 20℄. A tool like Bunh[19℄ uses hill-limbing to searh for good lusteringsof software modules based upon a `�tness' funtion.The �tness funtion is essentially a metri whihmeasures ohesion and oupling between modules ina luster. The metri has been suessfully appliedto a number of real-world appliations [22, 24℄. In allexisting appliations the module dependene graphused was not weighted, but the metri used doesater for weighted graphs and so there is no reason

not to use Bunh to produe a lustering of oneptslies.10 AknowledgementsMark Harman and Rob Hierons are supported, inpart, by EPSRC Grants GR/R98938, GR/M58719,GR/M78083 and GR/R43150 and by two develop-ment grants from DaimlerChrysler. Niolas Gold issupported by EPSRC Grant GR/R71733 and wouldalso like to gratefully aknowledge the support of theComputer Sienes Corporation.Referenes[1℄ T. Ball and S. G. Eik. Visualizing program slies.In A. L. Ambler and T. D. Kimura, editors, Proeed-ings of the Symposium on Visual Languages, pages288{295, Los Alamitos, CA, USA, Ot. 1994. IEEEComputer Soiety Press.[2℄ J. M. Bieman and L. M. Ott. Measuring funtionalohesion. IEEE Transations on Software Engineer-ing, 20(8):644{657, Aug. 1994.[3℄ T. J. Biggersta�, B. Mitbander, and D. Webster.The onept assignment problem in program under-standing. In 15th International Conferene on Soft-ware Engineering, Baltimore, Maryland, May 1993.IEEE Computer Soiety Press, Los Alamitos, Cali-fornia, USA.[4℄ D. W. Binkley. Computing amorphous programslies using dependene graphs and a data-owmodel. In ACM Symposium on Applied Computing,pages 519{525, The Menger, San Antonio, Texas,U.S.A., 1999. ACM Press, New York, NY, USA.[5℄ G. Canfora, A. Cimitile, and M. Munro. RE2: Re-verse engineering and reuse re-engineering. Journalof Software Maintenane : Researh and Pratie,6(2):53{72, 1994.[6℄ A. Cimitile, A. R. Fasolino, and P. Marasea. Reusereengineering and validation via onept assign-ment. In Proeedings of the International Confer-ene on Software Maintenane 1993, pages 216{225.IEEE Computer Soiety Press, Sept. 1993.[7℄ P. Devanbu, R. J. Brahman, P. G. Selfridge, andB. W. Ballard. LaSSIE: A knowledge-based softwareinformation system. Communiations of the ACM,34(5):35{49, May 1991.[8℄ N. E. Fenton. Software Metris: A Rigorous Ap-proah. Chapman and Hall, 1990.[9℄ N. E. Gold. Hypothesis-Based Conept Assign-ment to Support Software Maintenane. PhD The-sis, Department of Computer Siene, University ofDurham, 2000.[10℄ N. E. Gold. Hypothesis-based onept assignmentto support software maintenane. In IEEE In-ternational Conferene on Software Maintenane(ICSM'01), pages 545{548, Florene, Italy, Nov.2001. IEEE Computer Soiety Press, Los Alamitos,California, USA.[11℄ N. E. Gold and K. H. Bennett. A exible methodfor segmentation in onept assignment. In 9th IEEE9

International Workshop on Program Comprehension(IWPC'01), pages 135{144, Toronto, Canada, May2001. IEEE Computer Soiety Press, Los Alamitos,California, USA.[12℄ M. Harman and S. Danii. Amorphous programsliing. In 5th IEEE International Workshop onProgram Comprenhesion (IWPC'97), pages 70{79,Dearborn, Mihigan, USA, May 1997. IEEE Com-puter Soiety Press, Los Alamitos, California, USA.[13℄ M. Harman, R. Hierons, and M. Protor. A newrepresentation and rossover operator for searh-based optimization of software modularization. InW. B. Langdon, E. Cant�u-Paz, K. Mathias, R. Roy,D. Davis, R. Poli, K. Balakrishnan, V. Honavar,G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C.Shultz, J. F. Miller, E. Burke, and N. Jonoska, edi-tors, GECCO 2002: Proeedings of the Geneti andEvolutionary Computation Conferene, pages 1351{1358, New York, 9-13 July 2002. Morgan KaufmannPublishers.[14℄ M. Harman, M. Okunlawon, B. Sivagurunathan,and S. Danii. Slie-based measurement of ou-pling. In R. Harrison, editor, 19th ICSE, Workshopon Proess Modelling and Empirial Studies of Soft-ware Evolution, Boston, Massahusetts, USA, May1997.[15℄ R. M. Hierons, M. Harman, C. Fox, L. Ouarbya, andM. Daoudi. Conditioned sliing supports partitiontesting. Software Testing, Veri�ation and Reliabil-ity, 12:23{28, Mar. 2002.[16℄ S. Horwitz, T. Reps, and D. W. Binkley. Inter-proedural sliing using dependene graphs. ACMTransations on Programming Languages and Sys-tems, 12(1):26{61, 1990.[17℄ V. Karakostas. Intelligent searh and aquisitionof business knowledge from programs. Journal ofSoftware Maintenane: Researh and Pratie, 4:1{17, 1992.[18℄ H. D. Longworth, L. M. Ott, and M. R. Smith. Therelationship between program omplexity and slieomplexity during debugging tasks. In Proeedingsof the Computer Software and Appliations Confer-ene (COMPSAC'86), pages 383{389, 1986.[19℄ S. Manoridis, B. S. Mithell, Y.-F. Chen, and E. R.Gansner. Bunh: A lustering tool for the reov-ery and maintenane of software system strutures.In Proeedings; IEEE International Conferene onSoftware Maintenane, pages 50{59. IEEE Com-puter Soiety Press, 1999.[20℄ S. Manoridis, B. S. Mithell, C. Rorres, Y.-F. Chen,and E. R. Gansner. Using automati lustering toprodue high-level system organizations of soureode. In International Workshop on Program Com-prehension (IWPC'98), pages 45{53, Ishia, Italy,1998. IEEE Computer Soiety Press, Los Alamitos,California, USA.[21℄ S. Manoridis, T. S. Souder, B. S. Mithell, Y.-F.Chen, and E. R. Gansner. REPortal: A web-basedportal site for reverse engineering. In 8th WorkingConferene on Reverse Engineering, pages 221{230,Stuttgart, Ot. 2001. IEEE Computer Soiety Press,Los Alamitos, California, USA.[22℄ B. S. Mithell. A Heuristi Searh Approah to Solv-ing the Software Clustering Problem. PhD Thesis,Drexel University, Philadelphia, PA, Jan. 2002.

[23℄ B. S. Mithell and S. Manoridis. REPortal: Aweb-based portal site for reverse engineering. In 8thWorking Conferene on Reverse Engineering, pages93{102, Stuttgart, Ot. 2001. IEEE Computer Soi-ety Press, Los Alamitos, California, USA.[24℄ B. S. Mithell and S. Manoridis. Using heuris-ti searh tehniques to extrat design abstrationsfrom soure ode. In W. B. Langdon, E. Cant�u-Paz,K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrish-nan, V. Honavar, G. Rudolph, J. Wegener, L. Bull,M. A. Potter, A. C. Shultz, J. F. Miller, E. Burke,and N. Jonoska, editors, GECCO 2002: Proeedingsof the Geneti and Evolutionary Computation Con-ferene, pages 1375{1382, New York, 9-13 July 2002.Morgan Kaufmann Publishers.[25℄ L. M. Ott and J. M. Bieman. Program slies as anabstration for ohesion measurement. In M. Har-man and K. Gallagher, editors, Information andSoftware Tehnology Speial Issue on Program Sli-ing, volume 40, pages 681{699. Elsevier, 1998.[26℄ L. M. Ott and J. J. Thuss. The relationship be-tween slies and module ohesion. In Proeedings ofthe 11th ACM onferene on Software Engineering,pages 198{204, May 1989.[27℄ L. M. Ott and J. J. Thuss. Slie based metris forestimating ohesion. In Proeedings of the IEEE-CSInternational Metris Symposium, pages 71{81, Bal-timore, Maryland, USA, May 1993. IEEE ComputerSoiety Press, Los Alamitos, California, USA.[28℄ C. Rih and R. C. Waters. The Programmer's Ap-prentie. ACM Press (Frontier Series), 1990.[29℄ M. J. Shepperd. Foundations of software measure-ment. Prentie Hall, 1995.[30℄ M. Ward. The formal approah to soure ode anal-ysis and manipulation. In 1st IEEE InternationalWorkshop on Soure Code Analysis and Manipu-lation, pages 185{193, Florene, Italy, 2001. IEEEComputer Soiety Press, Los Alamitos, California,USA.[31℄ M. Weiser. Program sliing. IEEE Transations onSoftware Engineering, 10(4):352{357, 1984.[32℄ L. M. Wills. Automated Program Reognition byGraph Parsing. PhD Thesis, AI Lab, MassahusettsInstitute of Tehnology, 1992.

10

... PROCEDURE DIVISION.A00-CONTROL SECTION.* INITIAL PROCESSINGA00-000.PERFORM S10-HOLIDAY-CHECK.MOVE '01' TO DL-INPUT-FORMAT.CALL 'DATEPRES' USING DATE-LINKAGE-PARMS.MOVE DL-OUT-DD-MM-CCYY TO H1-DATE.MOVE SPACES TO CHECKING-SLIP.MOVE '011' TO APS-RECORD-OUT.CALL 'GBAAZ0X' USING APS-RECORD-OUT.CALL 'GBABB0X' USING CHECKING-SLIP.MOVE '010' TO APS-RECORD-IN.A00-010.* READ APS RECORDPERFORM C00-READ-APS.IF APS-EOF = END-OF-FILEGO TO A00-090.* CHECK FOR HORISIF APS-HORIS NOT = 'AH'GO TO A00-080.* CHECK FOR MORTGAGE INTERESTIF APS-M-INT = ZEROESGO TO A00-080.A00-020.* CALCULATE NEW REDUCED MORTGAGE INTERESTCOMPUTE W-RED-INT-4 =OUT-OUTSTANDING - (W-TAX-RATE * OUT-OUTSTANDING).COMPUTE W-RED-INT ROUNDED = W-RED-INT-4 + 0.IF GBAIA110 = 'M'MOVE 12 TO W-FREQMOVE 0.12 TO W-FREQ-P.IF GBAIA110 = 'Q'MOVE 4 TO W-FREQMOVE 0.03 TO W-FREQ-P.COMPUTE W-RED-INT-2 = W-RED-INT / W-FREQ.SUBTRACT 0.0005 FROM W-RED-INT-2.COMPUTE W-RED-INT-3 ROUNDED = W-RED-INT-2 + 0.A00-030.MULTIPLY W-FREQ BY W-RED-INT-3.MOVE W-RED-INT-3 TO GBAOA191.EJECTIF GBAIA190 = SPACESGO TO A00-040.IF GBAIA191 = ZEROESGO TO A00-040.DIVIDE GBAOA191 BY GBAIA191 GIVING W-PERCENTAGE.IF W-PERCENTAGE GREATER THAN 1.03GO TO A00-040.IF W-PERCENTAGE LESS THAN 0.97GO TO A00-040.GO TO A00-070.A00-040.PERFORM C20-PRINT.A00-070.MOVE SPACES TO CHECKING-SLIP.MOVE GBAIA010 TO CS-POLICY.MOVE '2' TO CS-TYPE.MOVE GBAIA019 TO CS-STANDARD (1).MOVE GBAOA019 TO CS-STANDARD (2).CALL 'GBABB0X' USING CHECKING-SLIP.Key:Dark Shaded :Write:APSReord oneptLight Shaded : Calulate:MortgageInterest oneptBoxed : Extra ode in ECS for Calulate:MortgageInterest

A00-080.PERFORM C10-WRITE-APS.GO TO A00-010.A00-090.MOVE '3' TO W-GBCM0133-2.* END OF JOB PROCESSINGCALL 'GBCM0133' USING APS-RECORD-INW-GBCM0133-2W-GBCM0133-3.MOVE END-OF-FILE TO APS-RECORD-OUT.CALL 'GBAAZ0X' USING APS-RECORD-OUT.MOVE END-OF-FILE TO CHECKING-SLIP.CALL 'GBABB0X' USING CHECKING-SLIP.A00-999.STOP RUN.EJECTC00-READ-APS SECTION.C00-000.* READ APS MASTER FILECALL 'GBAAY0X' USING APS-RECORD-IN.IF APS-EOF = END-OF-FILEMOVE HIGH-VALUES TO APS-RECORD-IN.C00-999.EXIT.SKIP3C10-WRITE-APS SECTION.* WRITE APS MASTER FILEMOVE '2' TO W-GBCM0133-2.CALL 'GBCM0133'USING APS-RECORD-OUT W-GBCM0133-2.CALL 'GBAAZ0X' USING APS-RECORD-OUT.C10-999.EXIT.SKIP3C20-PRINT SECTION.C20-000.IF A-LINENO LESS THAN 25GO TO C20-010.ADD 1 TO A-PAGENO.MOVE A-PAGENO TO H1-PAGE.MOVE C-1 TO P-CC.MOVE H1-HEADLINE TO P-LL.PERFORM S00-PRINT.MOVE WS-2 TO P-CC.MOVE H1-HEADLINE TO P-LL.PERFORM S00-PRINT.MOVE 0 TO A-LINENO.C20-010.MOVE WS-2 TO P-CC.MOVE GBAIA010 TO P1-KEY.MOVE P1-DATALINE TO P-LL.PERFORM S00-PRINT.MOVE SPACES TO P-LL.ADD 2 TO A-LINENO.C20-999.EXIT.EJECTS00-PRINT SECTION.S00-000.* PRINTS A LINECALL 'PRINT' USING P-PRINTLINE.S00-999.EXIT.S10-HOLIDAY-CHECK SECTION.* CHECK FOR PAYMENT HOLIDAYIF APS-HOL-MONTH = DL-MONTHMOVE 'Y' TO OUT-PAYMENT-HOLMOVE ZEROES TO OUT-OUTSTANDING.S10-999.EXIT.Figure 8: Cobol Mortgage Payment Calulation Program11

