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ABSTRACT
The architecture of many large software systems is rarely
documented and if documented it is usually out of date. To
support developers maintaining and evolving these systems,
an up to date view of the architecture could be recovered
from the system’s implementation. Source code or object
code extractors may be used to recover the architecture.

In this paper, we explore using two types of extractors
(source code and object code extractors) to recover the ar-
chitecture of several large open source systems. We then
investigate the differences between the results produced by
these extractors to gain a better understanding of the benefits
and limitations of each type of extractor. Our experimental
results show that both types of extractors have their bene-
fits and limitations. For example, an object code extractor is
easier to implement while a source code extractor recovers
more dependencies that exist in the source code as seen by
developers.

1 INTRODUCTION
Software architecture documents show the main subsystems
of a software system and the interaction between these sub-
systems. For example, the architecture of an operating
system may indicate that it has the following subsystems:
File System, Memory Manager, Network Interface, Process
Scheduler, and Inter-Process Communication subsystems.
The architecture may also show that the Memory Manager
subsystem depends on (i.e.uses functions or data structures
defined in) the File System subsystem in order to swap pages
to disk.

All too often the architecture of a software system is not
well-documented or is not up to date. Software develop-
ers working on large software systems can analyze the im-
plementation of a software system to recover its architec-
ture [3, 6]. An extractor analyzes the implementation of the
software system and produces a dependency graph. The de-
pendency graph shows how software entities such as vari-
ables, macros and functions depend on each other. An ex-
tractor produces tuples such as “calls funcA funcB”
or “calls fileA.c fileB.c”. The software architec-
ture is derived by lifting extracted low level dependencies
between functions or files (such asfuncA or fileA.c)
to high level dependencies between subsystems (such as the

Memory Manager subsystem).

Several types of extractors can be used to recover the archi-
tecture. For example, an extractor could recover the depen-
dency graph from the source code or the object code. The
executable could be analyzed at runtime as well to produce
a dynamic dependency graph. For programming languages
which have macros, such as C and C++, either the source
code or the preprocessed code could be analyzed. In short,
the architecture of a software system can be recovered by
analyzing the source code or any of the intermediate code
representation throughout the build process. Figure 1 gives
an overview of the build process for a C application using
GNU build tool (gcc):

• The Preprocessor (cpp) examines the source code files,
removes all comments, and expands include files,
macro definitions and all other preprocessor directives.

• The Compiler (cc1plus) takes the preprocessed source
code and produces object code.

• The Linker (ld) combines the object files along with
necessary system libraries to produce one single exe-
cutable program.
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Figure 1: The Build Process For a C Software Application

Recovering the architecture by analyzing the various kinds
of intermediate code has its benefits and limitations. For
instance, an object code extractor is relatively easy to im-
plement since it requires analyzing object files which have a
simple format that is not as complex as analyzing the source
code. Unfortunately, an object code extractor produces de-
pendencies based on the source code after the expansion of
macros and compiler optimizations. These dependencies are
likely to confuse software developers who are more com-
fortable dealing with source code with macros in it instead
of the code after the expansion of macros. On the other hand
an extractor which analyzes the source code before macro
expansion will produce a more familiar dependency graph to
a developer who works at the source code level but on the
other hand such an extractor is difficult to implement due
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to the complexity associated with both macro expansion and
source code syntax. Furthermore, the dependency graph pro-
duced by an object code extractor represents a single possible
configuration of a software system, whereas a source code
extractor would produce a more complete dependency graph
which corresponds to the various build configurations of the
software system.

In this paper, we investigate the dependency graphs produced
by two types of extractors (source and object code extrac-
tors). We analyze several large open source software systems
using both types of extractors. We then investigate the dif-
ferences between the dependency graphs produced by these
extractors. The focus of our comparison is on determining
which differences are due to the extraction technique used
and which are due to limitation or bugs in the implementa-
tion of an extractor. In particular, we seek to understand the
following issues:

• The differences between the dependency graph pro-
duced by a source code extractor and an object code
extractor.

• The amount of missing dependencies in a source code
extractor which are due to the complexity of developing
such an extractor since implementors of such an extrac-
tor would need to deal with legacy code that may be
hard to analyze.

Prior related work which studied dependency extractors has
focused on evaluating extractors by:

• Comparing extractions on a small manually crafted
software systems with constructs known to be hard to
extract [1].

• Comparing extractors on different software systems [7].
• Investigating the different types of reports (call trees,

data and control graphs) produced using the extracted
data [2].

In contrast, the work presented in this paper focuses on per-
forming our analysis on several larger open source case stud-
ies. We investigate the differences carefully in a semi auto-
mated fashion to understand better the reasons behind the
differences (differences due to bugs versus others due to the
extraction technique), instead of simply pointing out the dif-
ferences between the extracted dependency graphs.

Organization of the Paper
The organization of the paper is as follows. In Section 2,
we compare the features and performance of the extractors
used in our study. In Section 3 we explain the process we
used to compare the facts produced by both extractors. In
Section 4 we present the results of our comparative empirical
experiment. Section 5 discusses lessons that we learned from
our experiment. Section 6 concludes the paper.

2 OVERVIEW OF THE TWO EXTRACTORS USED
IN OUR ANALYSIS: LDX AND CTAGX

In this paper, we compare the extracted facts for large soft-
ware systems at the source code level using a source code
extractor calledCTAGX and at the binary object file level
using an object code extractor calledLDX. We now give an
overview of both extractors. We present the extraction tech-
nique used by them and the type of data produced by them.

LDX: A Linker Based Extractor
LDX is a linker-based fact extractor which operates on the
object code [9]. It is based on a customized version of the
GNU linker ld. TheLDX extractor makes use of the linker’s
knowledge of function and module dependencies to produce
program information such as a call graph and variable usage.
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Figure 2: TheLDX Extraction Process

Figure 2 shows theLDX extraction process.LDX integrates
into the build process of a software application and produces
the executable along with the dependency graph for the ana-
lyzed software system.

The schema for the data produced byLDX is shown in Figure
3. The schema has three types of relations: Kind, Define, and
Use.

• Kind: identifies the entity type. An entity is either
of type “cFunction” or “cKind”. “cFunction” indi-
cates that the entity is a function; whereas an entity
of type“cKind” can be of type global variable.LDX
is limited to the type of information that is available
at the linking phase, for example, the schema does not
contain information about macros or comments in the
source code since the preprocessor would have already
removed the comments and expanded the macros in the
code analyzed byLDX as shown in Figure 2.

• Define: provides location information for the object
file where a particular entity is defined. For example,
“define entityA fileC.o ” indicates that “en-
tityA” is defined in the object file “fileC.o”.

• Use: describes the dependency relations between en-
tities. For example, “use entityA entityB ”
means entitiyA calls a function called “entityB”, or uses
a global variable called “entityB”.

CTAGX: A ctagsBased Extractor
Unlike LDX which operates on the object code,CTAGXop-
erates on the source code. It is based on a source code tag-
ging tool calledctags[4] which recovers information about
the software system. By adoptingctags, CTAGXdoes not
need to consider a large number of peculiarities of legacy
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Figure 3: Schema for the Facts Produced byLDX

source code. For example, it does not need to worry about
ANSI and K&R C differences in the source code. Moreover,
ctagsuses several heuristics to robustly parse source code
containing#if preprocessor conditional constructs.ctags
also uses a conditional path selection heuristic to resolve
complicated choices. It employs a fall-back strategy when all
heuristics fail. Finally,ctagshas been highly optimized and
can parse and tag source code very quickly and efficiently.

CTAGX is not integrated into the build process, instead it
analyzes all the .h and .c files in the source code directory of
a software system. To extract facts from these files:

• CTAGXinvokesctagsfor each file in the software sys-
tem to identify the type of every defined entity in the
file along with the entity’s beginning line number. This
information for all files is combined to build aGlobal
Symbol Table.

• The entity beginning line number is used byCTAGXto
retrieve the non-commented code content of each de-
fined entity. Tokens in the code content of each de-
fined entity are checked against theGlobal Symbol Ta-
ble to produce the dependency graph: If a token exists
in the symbol table and it exists in the code content of
a particular entity, thenCTAGXcreates a dependency
between that entity and the entity corresponding to the
token found in the symbol table. The content of each
entity is used as well to retrieve additional entity infor-
mation such as the comment tokens for each entity, its
parameters, its return type, and a listing of the control
keywords used in an entity. To deal with entities with
similar names,CTAGXcombines the contents of enti-
ties with similar name into the content of a single entity
with a common name.

Comparison of the Two Tools
SinceLDX analyzes the binary object code, it more likely
to produce more accurate results thanCTAGX. The prepro-
cessor has already removed the comments, expanded the in-
cludes, macros and other directives in the code analyzed by
LDX, therefore the code represents a picture which is much
closer to the program’s runtime behavior.

However, an object code extractor, likeLDX, has a number

Property LDX CTAGX CPPX
Extracted Facts Level Function Statement Expression
Ease Of Development Easiest Medium Hardest
Analysis Technique Exact Heuristic Exact
Development Technique Extend Post-Process Extend
Supported Languages C, C++ C C, C++
Handles Incomplete Code N Y N
Handles Incompilable Code N Y N
Extracts Comments N Y N
Extracts Macros N Y N
Build Time View Y N Y

Table 1: Comparison of Properties ofLDX, CTAGX, and
CPPX

of drawbacks:

• It cannot process code that has syntax errors or code
that could not compile. Uncompilable code can be
caused by missing build configurations or missing in-
cluded files, etc. The ability to handle incomplete and
incompilable code is crucial during software evolution
studies since such studies require the analysis of every
version of the the source code and the source code may
not compile for several versions.

• The generated dependencies do not match the expec-
tations of a developer who is accustomed to viewing
the source with all macros, includes and other directives
unexpanded. Moreover an object code extractor is un-
able to produce detailed information below the function
level.

A source code extractor likeCTAGXhas its advantages com-
pared toLDX:

• CTAGXproduces a view which is closer to the depen-
dency structure which developers would expect to see
based on their interaction with the code as shown in an
editor, sinceCTAGXproduces facts in which all com-
ments are preserved; all macros are unexpanded; and all
#ifdef conditional compilation branches are consid-
ered.

• CTAGX is quite robust, since it can analyze un-
compilable code by recovering facts from a file while
skipping the sections of the code which it fails to parse.

• CTAGX can supply information below the function
level, such as function return types, and parameter
types, local variable usage, etc.

CTAGX has its limitations as well. It processes all the .c
and .h files in the source code directory, but it does not an-
alyze Makefiles or attempt to preprocess the code. Thus the
facts produced byCTAGXare likely to be less accurate in
respect to a software’s run-time behavior, sinceCTAGXdoes
not consider issues that arise during the build process such
as compilation flags.

Table 1 compares the properties ofCTAGXandLDX. The
table as well compares both extractors to theCPPXextrac-
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system build (LDX) ctags CTAGX
Openssh-3.9p1 47.339s 2.00s 19.9s
Postgres-7.3.4 2m 27.257s 9.19s 37.22s
Linux-2.6.1 25m 1.485s 1m 58.69s 21m 33s

Table 2: Time Statistics for Running Both Extractors on
Openssh, Postgres, and Linux

tor which analyzes preprocessed source code [5]. None of
the extractors is implemented from scratch, instead they each
make use of other open source tools.CTAGXpost processes
ctags’ output. LDX andCPPXare implemented by modify-
ing the source code of theld linker and thecc1pluscompiler
respectively.CPPX performs more detailed analysis to the
source code and can produce data at the expression level but
it does not have access to comments or macros. Since the
CPPXextractor is based on a regular compiler it cannot deal
with incomplete (such as missing header files or build con-
figurations) or uncompilable code (such as code with syntax
errors). SimilarlyLDX needs the source code to compile
so it can extract information from the produced object code.
CTAGXuses several heuristics to recover gracefully from in-
correct code and to analyze#ifdef branches, in contrast
the other two extractors that use well defined grammars.

All three extractors have been developed by members of our
research group. The need to modify the source code of the
compiler and the depth of the extracted facts (expression
level) makesCPPX the hardest to implement.LDX is the
simplest to implement since the binary file syntax is straight
forward in comparison to the grammar of modern program-
ming languages such as C or C++. In this paper, we focus
our analysis on theCTAGXandLDX extractors which are
examples of source and object code extractors.

The analysis time needed to recover a dependency graph
varies from one system to the other. The time needed for
either the (LDX or CTAGX) extraction technique is fast in
comparison to the build time of the analyzed software appli-
cation. LDX requires a few additional seconds beyond the
build time of an application.CPPX requires almost twice
as much time as needed to build an application.CTAGX
is much faster thanLDX and CPPX. The time needed for
CTAGX compromises of the time needed to runctags as
well as the time needed to analyze thectagsoutput. Table 2
shows the time statistics for extracting the three open source
software systems used in our study: Openssh version 3.9p1,
Postgres version 7.3.4, and Linux version 2.6.1. For example
for Postgres version 7.3.4, it takes about 2 minutes to build
and extract facts usingLDX, it takes about 9 seconds to run
ctagson the system, and it takes about 37 seconds to extract
facts usingCTAGX. Note that the Linux build is timed using
the full configuration setting where all possible build config-
uration options are enabled.

In summary, both extractors can recover a dependency graph

for large software systems in a reasonable time. Yet, each
extractor has its limitations due to the used extraction tech-
nique.

3 COMPARISON PROCESS
In this section, we present the comparison process we used
to study the difference between both extraction techniques.
Figure 4 gives an overview of the process. Facts are re-
covered from a software system using both extractors. The
CTAGXfacts are reduced to only reflect the type of facts that
are available inLDX facts, in particular facts relating to com-
ments and to information inside of a function such as the
number of conditional statements are removed. The modi-
fied facts for both extractors record only that an entity exists
and track which other entities it depends on.

Using a simplePerl script, we compute the difference be-
tween the facts produced by each extractor. Using a set of
Perl andgrepscripts, we semi-automatically go through the
differences to determine if the differences are due to bugs
or implementation decisions in the extractor, or if they are
due to the used extraction technique. The scripts automate
the difference analysis process by locating the reported loca-
tions of entities and showing us code snippets surrounding
the entity. Using the output of the scripts, we are usually
able to determine if a particular difference is due to a bug, an
implementation decision, or a limitation of the used extrac-
tion technique. In some cases, we had to closely monitor the
build process by recording the build session and studying the
output of the preprocessor for a few files which had trouble-
some entities1. If we determined that a difference was due to
a bug in the implementation, we updated the implementation
of the extractor and re-extracted the facts and repeated our
comparison process.

Our comparison process has permitted us to not only de-
termine accurately the differences between both extraction
techniques but to improve as well the implementation of both
extractors. Throughout our analysis we discovered and ad-
dressed several issues, for example:

• For LDX, we added an option to prevent the output of
system calls since they are not outputted byCTAGX.

• We updated theLDX implementation to deal correctly
with static variables defined inside functions. In the
example below,LDX would output a dependency be-
tween “func ” and “static_var.0 ”. Such a depen-
dency existed in the object code but it is not relevant
when studying dependencies between source code en-
tities since “static_var ” is not accessible outside
“ func ” and LDX should be outputting relations only
at the function level. For the studied systems,LDX had
extracted several static variables defined inside a func-

1We studied the output of the preprocessor by recording the build ses-
sion then re-running the compiler using the same command line parameters
as recorded in the session. We also added the “-E” flag to cause thegcc
compiler to stop after the preprocessing phase and output the preprocessed
source code.
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Figure 4: An Overview of our Comparison Process

tion since they are recorded by the linker in the object
file. The following code snippet shows an example of a
static variable defined inside a function:

vo id func ( ) {
s t a t i c i n t s t a t i c v a r = 1 ;

}

• We fixed a number of bugs that were discovered inLDX.
• ForCTAGX, we fixed several bugs. In particular, a num-

ber of heuristics used byCTAGXto determine the con-
tent of a source code entity were updated to address
some of the issues that were discovered during the com-
parison of the CTAGX and LDX facts.

• We updatedCTAGX to correctly process C++ style
comments (“//”) in C code since the studied Linux sys-
tem made use of such comment style which is supported
by the GNU gcc compiler.

Wherever possible we fixed the bugs we found in the imple-
mentation of the used extractors. ForCTAGXwe fixed the
bugs ourselves. ForLDX we contacted its developer who
fixed the bugs. In some cases, we could not easily fix the
bugs in the implementation instead we just left the bugs and
noted them in our analysis as a limitation of the tool but not
a limitation of technique itself. For example, we discovered
two bugs in the CTAGX extractor which are partly due to the
complexity associated with parsing source code before the
expansion of macros:

• Complex Conditional Directives: We discovered that
ctags, which is used as the backend ofCTAGX, fails to
identify entities if there are too many levels of nested
conditional directives. This problem mainly occurs in
yacc generated source code files. For example,ctags
fails to locate entities such as “plpgsqlyyparse” in “sr-
c/pl/plpgsql/src/plgram.c” and “yyparse” in “src/back-

end/parser/gram.c”. The following code fragment from
“src/backend/parser/gram.c” in Postgres is an example
of this case:

# i f d e f YYPARSEPARAM
# i f d e f i n e d ( STDC ) | | d e f i n e d ( c p l u s p l u s )
i n t yypa rse (vo id ∗YYPARSEPARAM)
# e l s e
i n t yypa rse (YYPARSEPARAM)

vo id ∗YYPARSEPARAM;
# e n d i f
# e l s e /∗ ! YYPARSEPARAM ∗ /
# i f d e f i n e d ( STDC ) | | d e f i n e d ( c p l u s p l u s )
i n t
yypa rse (vo id )
# e l s e
i n t
yypa rse ( )

# e n d i f
# e n d i f
{ /∗ f u n c t i o n body . . . ∗ / }

• Confusion in Determining the Name of an Entity:
ctagsis not able to correctly determine the name of a
variable if a macro or a compiler directive is used on the
same line. The following code fragment from “linux-
2.6.1/arch/i386/kernel/setup.c” in Linux is an example
of this case:

i n t d i s a b l e p s e i n i t d a t a = 0 ;

ctags mistakenly assumes that the last token be-
fore an equal sign (=) is the name of a defined
variable. However, based on comments in “linux-
2.6.1/include/linux/init.h”, the__initdata is used to
flag initialized data to the Linux kernel.

4 COMPARATIVE EXPERIMENT
We now detail the analysis we performed to compare the out-
put of the two extractors. We conducted our comparative ex-
periments using three open source software systems:

1. Opensshwhich implement a secure SSH network pro-
tocol. It includes the ssh, scp, and sftp programs. For
our study we used version 3.9p1 which has about 72,000
lines of code.

2. Postgreswhich is a free SQL compliant object Relational
Database Management System (DBMS) that originated
at the University of California at Berkeley in 1996. For
our study we used version 7.3.4 which has about 480,000
lines of code.

3. Linux which is an operating system that runs on several
platforms and is developed by a large number of devel-
opers worldwide. For our study we used Linux version
2.6.1 which has about 4,900,000 lines of code.

After applying bothLDX andCTAGXto the studied systems,
we started our comparison process, verifying the differences,
and updating the implementation of an extractor if we found
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a bug. Our comparison process (the center oval in Figure 4)
consists of two phases: comparison of entities and compari-
son of dependencies.

Comparison of Entities
SinceCTAGXanalyzes all the#ifdef paths and all the files
in the software system, we expected that the entities defined
in the CTAGXfacts would be a super set of the entities de-
fined in theLDX facts. However, our experiment shows that
this is not the case instead the relation is more like the right
hand side of Figure 5:CTAGXhas more entities defined than
LDX, but there are certain entities detected inLDX that were
not detected byCTAGX.

Figure 5: Expected and Actual Entity Comparison Results

Using the comparison process outlined in Figure 4 and
through manual inspection of the source code for several dif-
fering entities, we categorized the differences into four main
categories:

1. Differences due toLDX incorrect output.

2. Differences due to Build Process.

3. Differences due to Preprocessor.

4. Differences due toctagslimitations.

Table 3 summarizes the results of our comparison process for
each software system. For example, theLDX output Openssh
has 1,529 entities, 88 of these entities do not exist in the
CTAGXoutput. 78 of these 88 entities are due to incorrect
handling of static variables inside functions byLDX and 10
entities are due to preprocessor peculiarities. In the follow-
ing subsections, we discuss the difference due to the Build
process and the Preprocessor. The differences due toLDX’
incorrect output andctags’ limitations were already explored
in the previous section.

Differences Due to Build Process
By analyzing the build process for the studied application,
we uncovered that in many cases a large number of files are
created during the build process. SinceCTAGX analyzes
the source code without taking into account the build pro-
cess, its facts do not contain any information about these
generated files. For example, theLDX facts have that the
“fmgr nbuiltins” and “fmgrbuiltin” entities are defined in
“postgresql-7.3.4/src/backend/utils/fmgrtab.o”. Our analysis
of a build session of Postgres reveals that these entities are

defined in the “fmgrtab.h” file which is created during the
building of Postgres.

In addition to automatically generated files, we discovered
that in Postgres a few source code files have the suffix
“ .map ” instead of having commonly used suffixes such as
“ .h ” and “.c ”. For Postgres, we repeated ourCTAGX
extraction and added “.map ” files to the list of files that
CTAGXanalyzes to make sure the entities in these files are
extracted.

Differences Due to Preprocessor
We uncovered two reasons to explain the difference for the
remaining entities betweenCTAGXandLDX. These two rea-
sons are due to the use of the C Preprocessor to:

• Declare an Entity:
Especially in Linux, there are many entities declared
by macros. For example, the data structures “class
deviceattr crypt” and “class deviceattr beacon” in

”linux/net/core/net-sysfs.c” are declared by a macro
called “WIRELESSSHOW” using the following syn-
tax:

WIRELESSSHOW( c r y p t , d i s c a r d . code , fm tdec ) ;
WIRELESSSHOW( beacon , miss . beacon , fm tdec ) ;

Similarly in Openssh, there is a macro called
“SPLAY PROTOTYPE(name, type, field, cmp)” de-
fined in “openssh-3.9p1/openbsd-compat/sys-tree.h”,
which is used to generate prototypes and inline
functions. Functions like “mmtreeRB INSERT”
and “mmtreeRB REMOVE” which are defined in
“openssh-3.9p1/monitormm.o” are generated by the
above macro.

• Override a Function Definition:
Our analysis revealed an interesting usage of macros in
the studied systems. For example, in Postgres the entity
“sslow” is defined in file “src/backend/regex/engine.c”
as follows:

# d e f i n e slow ss low

In this example, the rest of the functions in the file refers
to a function “slow” which is defined in the file, but no
function “sslow” is defined. Instead the “#define ”
is used to override the name of the function “slow” to
“sslow”. It appears that the macro is used to simulate
inheritance in C. To implement a different function, the
only change needed is to alter the defined value (“ss-
low”) and the code will call the new function.

Comparison of Dependencies
After theEntity Comparisonphase, we can now compare the
dependencies between the entities generated by both extrac-
tors. The Dependency Comparison phase is divided into 3
steps:

• Step 0 – Initial State: We compare the dependencies
produced by both extractors without performing any
modifications to the data.
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Description Openssh Postgres Linux
Total initial LDX entities 1,529 6,965 65,064
Entities that onlyLDX has 88 296 16,039
Differences due toLDX’ incorrect output
→ Static variable inside functions 78 90 1,008
Differences due to Build Process
→ Files generated during the build 0 2(+3) 1,745(+1,747)
→ Including non-standard files 0 61 0
Differences due to Preprocessor
→ Macro defined entities 8 92 12251
→ Overriding a function definition 2 47 13(+727)
Differences due toctags’ limitations
→ Complex conditional directives 0 3 0
→ Confusion in determining name of an entity 0 0 306

Table 3: Entity Comparison Statistics for Openssh, Postgres and Linux (Numbers in Brackets Indicate Differences that were
Categorized Through Manual Analysis of the Source Code and the Binary Object File)

• Step 1 – Common Entities: We focus our analysis
on dependencies between the common entities between
both extractors. We remove all dependencies that do not
originate or terminate in an entity which is in common
between both extractors using the results of our entity
comparison phase. The intuition behind this step is that
difference is likely due to an entity that existed in a file
that was not part of the studied executable sinceCTAGX
analyzes all files in the source code directory without
taking into account the build configurations.

• Step 2 – Macro Expansion: SinceCTAGXanalyzes
the code before the expansion of macros andLDX an-
alyzes code after their expansion, we use theCTAGX
facts to simulate the expansion of macros. We expand
the macros in theCTAGXfacts. We then compare the
dependencies between theCTAGXfacts after macro ex-
pansion and theLDX facts.

• Step 3 – Macro Expansion Cleanup: The expan-
sion of macros adds a large number of dependencies.
For example, if there are several conditional#ifdef
branches inside a function, we would expand all the
macros inside these branches during the prior step. In
this step, we go through theCTAGXdependencies and
we remove all dependencies that were added during the
macro expansion and that did not exist in theLDX facts
in Step 2.

Steps CTAGXonly Common LDX only
Initial State 47.78% 38.72% 13.50%
Step 1 16.43% 78.97% 4.60%
Step 2 17.35% 81.87% 0.78%
Step 3 16.45% 82.76% 0.79%

Table 4: Dependency Comparison Statistics for Openssh

Tables 4, 5 and 6 display the percentage for Initial State
and the 3 steps in our analysis along three criteria:

Steps CTAGXonly Common LDX only
Initial State 70.93% 20.89% 8.18%
Step 1 10.78% 74.16% 15.06%
Step 2 17.10% 82.78% 0.13%
Step 3 11.23% 88.63% 0.14%

Table 5: Dependency Comparison Statistics for Postgres

Steps CTAGXonly Common LDX only
Initial State 91.26% 4.74% 4.00%
Step 1 50.15% 28.81% 21.05%
Step 2 86.56% 10.43% 3.01%
Step 3 56.03% 34.12% 4.85%

Table 6: Dependency Comparison Statistics for Linux

1. CTAGX only: Percentage of dependencies inCTAGX
but not in LDX in comparison to the total number of
dependencies generated by both extractors.

2. Common: Percentage of dependencies that are com-
mon between bothLDX andCTAGX in comparison to
the total number of unique dependencies generated by
both extractors.

3. LDX only: Percentage of dependencies inLDX but not
in CTAGXin comparison to the total number of depen-
dencies generated by both extractors.

Figures 6(a), 6(b), 6(c) are plots of the data in Tables 4, 5,
6 for Openssh, Postgres, and Linux respectively. The results
of our dependency comparison phase reveal that:

• LDX misses a large number ofCTAGXdependencies.
These missing dependencies are due to the fact that
CTAGX analyzes and extracts dependencies from all
conditional paths (#ifdef ) inside a function, whereas
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Figure 6: Dependency Statistics for Postgres, Openssh and Linux For each Comparison Step

LDX can only recover information for a single condi-
tional path which corresponds to a particular build con-
figuration.

• For Openssh and Postgres, there is less than 1% of the
LDX dependencies thatCTAGXcannot recover. How-
ever, there are about 5% of theLDX dependencies in
Linux that CTAGX cannot retrieve. Through manual
analysis of the source code and the generated binary
code, we discovered that in several casesLDX outputs
data that corresponds to the code after compiler opti-
mization. These cases account for the 5% missing de-
pendencies in Linux and the 1% in the other two sys-
tems. For example, if a function (FuncA) references
static variable (structtest) which contains a reference
to a function (FuncB), the compiler might optimize
out the access to the static variable and theLDX facts
would only show a dependency from function (FuncA)
to function (FuncB). The code snippet below illustrates
this example.

i n t FuncB ( ) {
p r i n t f ( ” h e l l o wor ld\n ” ) ;
r e t u r n 0 ;

}

s t a t i c s t r u c t f u n c p t r s t r u c t {
uns igned i n t t e s t i n t ;
i n t (∗ t e s t p t r ) ( ) ;

} s t r u c t t e s t ;

i n t FuncA ( ) {
s t r u c t t e s t . t e s t i n t = 7 ;
s t r u c t t e s t . t e s t p t r = FuncB ;

i f ( ( s t r u c t t e s t . t e s t p t r ) ( ) == 0) {
r e t u r n 0 ;

}
r e t u r n 1 ;

}

There are many similar examples in the studied sys-
tems in particular in Linux. For example,LDX in-

dicates that function “inteli810 alloc by type” which
is defined in “linux-2.6.1/drivers/char/agp/intel-agp.c”
depends on “agpgenericmaskmemory”. Examining
the source code we note that the function de-references
a member field in a static struct which contains a pointer
to “agp genericmaskmemory”.

• CTAGXonly dependencies are larger in Linux in com-
parison to the other studied systems. This is due to the
fact that Linux has a large number of build configu-
ration which are defined using macros and#ifdef ’s
which CTAGXanalyzes butLDX is not capable of ana-
lyzing.

5 LESSONS LEARNED
We learned several lessons from our comparative experi-
ment. We now discuss these lessons in detail.

Lesson 1 – Facts produced by an object code extractor
don’t reflect the source code level dependencies seen by
developers
Although an object code extractor may be easier to imple-
ment, software developers should be careful when examining
the dependencies produced by it. An object code extractor
produces facts based on entities and relations that a devel-
oper is likely never to encounter when browsing or editing
the code in a source code browser. This occurs because such
an extractor produces facts based on code that has been pre-
processed and optimized.

Lesson 2 – Facts produced by a source code extractor re-
flect the source code level dependencies seen by develop-
ers and contain most of the information produced by an
object code extractor
A source code extractor performs its analysis on the source
code as seen by a software developer. Developers are likely
to be more comfortable examining facts produced by a
source code extractor since they are based on the source code
as shown in the development environments used by develop-
ers. Our experiment has shown that by expanding macros,
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facts produced by a source code extractor contain almost all
of the facts produced by an object code extractor.

Lesson 3 – Both types of extractors are valuable for de-
velopers
For software developers trying to understand a software sys-
tem both types of extractors would be valuable. Although an
object code extractor would produce dependencies that are
not visible to developers at the source code level, the depen-
dencies produced by an object code extractor would reveal
hidden dependencies that may not be clear due to macros
and complex compilation directives. It would be interest-
ing to explore annotating the more complete facts produced
by a source code extractor to indicate which macros are ex-
panded, which conditional define branches are followed, and
which hidden dependencies exist for a particular build con-
figuration.

Lesson 4 – The build time view should be explored when
analyzing large software systems
Our results indicate that several files and entities are defined
during the building of a software system. A good knowl-
edge of the build process of a software system is valuable.
The build time view of a software system, presented in [8],
should be explored during architecture analysis since it is
likely to reveal in many cases unexpected dependencies.

Lesson 5 – Heuristic parsing is a useful technique for an-
alyzing large software systems
CTAGXandctagsuse a number of heuristics to perform their
analysis on incompilable or incomplete source code. Al-
though in our presented experiment we did not discuss the re-
sults of usingCTAGXon code with syntax errors, our experi-
ment showed thatCTAGXcan analyze code without needing
a makefile and that the produced facts represent almost all
the facts produced by theLDX extractor which performs its
analysis using well defined grammars and complete build in-
structions.

Lesson 6 – Using our comparison process to evaluate
other extractors
Although the main purpose of our comparison process, out-
lined in Figure 4, was to compare the facts produced by the
two particular extractors, we found that our process is valu-
able in improving the quality of the studied extractors. Oth-
ers can use our comparison process for testing and improv-
ing their extractors. Throughout our analysis, we uncovered
many bugs inCTAGXandLDX that have been corrected and
verified as a result of using our comparison process.

Lesson 7 – The gap between the pre and post processed
source code is significant for large software systems
During our dependency comparison phase, we examined
closely the number of macro expansions needed in the stud-
ied software systems. We found that a single macro was ex-
panded as many as 6 levels in a software system. Table 7
shows the percentage of macros that are expanded during
each level of macro expansion for Openssh, Postgres, and

Level Openssh Postgres Linux
1 20.21% 49.96% 46.80%
2 7.77% 32.05% 33.60%
3 21.37% 27.07%
4 20.99%
5 18.43%
6 17.42%

Table 7: Levels of Macro Expansion for Each Studied Soft-
ware System

Linux. For example in Openssh, all macros are expanded
up to 2 levels deep: about 20% of all macros are expanded
once, and about 8% of all macros that exist in the source
code are expanded twice. The same information is shown
graphically in Figure 7. It takes 2, 3 and 6 levels to ex-
panded all macros in Openssh, Postgres and Linux respec-
tively. This large number of levels increases the gap between
the developer’s view of the source code and the code that
is actually executed. It is interesting to note that the macro
expansion rate for the first level is not 100%, since in some
cases macros are defined in header files to avoid circular in-
cludes. It would be interesting to explore the percentage of
used macros for each build configuration and to measure the
amount of dead macros that are not used in any build config-
uration. These dead macros could be refactored and removed
from the code.
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Figure 7: Macro Expansion Statistics

6 CONCLUSION
To overcome the lack of documentation, software develop-
ers can recover the software architecture from a system’s im-
plementation. We pointed out that there are many types of
extractors that could be used to extract dependencies. These
extracted dependencies are lifted to recover the architecture
from the implementation. We focused on two types of ex-
tractors: a source code and an object code extractor. In con-
trast to previous work which compared extractors [1, 2, 7],
we focused on performing our analysis on much larger open
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source case studies while ensuring that we thoroughly inves-
tigated the differences between the facts produced by each
type of extractor to have a better understanding of the reasons
behind the differences. In particular, we explored whether
these differences are due to implementation bugs, or if they
are due to limitations of the used extraction technique.

Our experimental results show that both types of extrac-
tion techniques are useful in recovering the dependencies
between entities in a large software systems. We as well
showed that the use of macros causes a significant gap be-
tween what software developers see in their code editors and
the actual code that executes. This gap translates to a large
difference between the facts generated by source and object
code extractors. Furthermore, the gap causes the appearance
of unexpected dependencies that are likely to introduce bugs
in the software system. Finally, our comparison process has
been useful in improving the quality of the studied extractors
and could be adopted by other developers of extractors.
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