
Copyright © 2005 Techfocus Media, Inc. All rights reserved.
FPGA and Structured ASIC Journal

Logic Lockdown
Design Security Part 2

Engineers are trained problem solvers. While various fields of 
engineering require different types of technical training and 
expertise, the techniques of problem solving are universal to all 
branches of the profession. If engineers are problem solvers, 
could one infer that reverse engineers are problem creators? In a 
narrow view, probably so – but reverse engineering has its place 
in the innovation cycle as well. Reverse engineers also help us 
hone our security skills to prevent attacks from those who wish to 
do us (and our design IP) harm.

Reverse engineering is not a back-alley, cloak and dagger, 
business-in-the-shadows affair – quite the contrary, in fact. 
Companies specializing in reverse engineering operate openly and 
have a long and public history, particularly in the semiconductor 
arena. In the United States, reverse engineering has the 
protection of law, with the Supreme Court ruling that “A trade 
secret law, however, does not offer protection against discovery 
by fair and honest means, such as by independent invention, 
accidental disclosure, or by so-called reverse engineering, that is 

by starting with the known product and working backward to divine the process 
which aided in its development or manufacture.”

The US Semiconductor Chip Protection Act specifically legalizes reverse 
engineering of competitors’ chips, both for the purpose of making compatible 
chips and for the purpose of producing a better, competing product. If you’re 
protecting something copyrightable (like software, music, images or video) the 
Digital Millenium Copyright Act spreads its umbrella a little bit in your direction. 
It apparently isn’t legal to reverse engineer in order to defeat protection 
schemes for copyrighted content, but even the DMCA has an exception 
permitting semiconductor reverse engineering.

Reverse engineering companies such as Semiconductor Insights and Chipworks 
have reverse engineered thousands of devices, publishing the results in 
detailed technical reports. Their business comes primarily from sources like 
semiconductor companies wanting to know how their competitors’ products 

Mirrored By: 

www.siliconinvestigations.com 

For more information, call us - 920-955-3693



Page 2

Copyright © 2005 Techfocus Media, Inc. All rights reserved.
FPGA and Structured ASIC Journal

work and from legal professionals wanting to prove that their clients’ patents 
were infringed or that their devices were copied in their entirety. Reverse 
engineering companies also consult on security issues for highly security-
conscious industries like financial, pay television, and smart cards. What this 
really means is one-stop shopping for all things security. The same companies 
can help you protect your design, help your competitors break through that 
protection, and help you reverse engineer their new product in order to sue 
them for infringement. Chances are these companies even invented many of 
the security threats you’re working to protect yourself from in the first place.

In the US, the best legal protection for your designs (which arguably isn’t 
much) probably comes through the patent process. Ironically, the patent 
process essentially requires you to reverse engineer your own product and 
publish the results in exchange for the possible protection of law for your 
invention. The law is specifically designed so that people can understand your 
invention and try to one-up you by making something better that doesn’t 
violate your patent. As we’ve discussed before, patent enforcement can also be 
tricky, unreliable, slow, and you won’t necessarily recoup the cost of defending 
your invention even if you win.

In short, if you really want to protect your stuff, you probably have to rely on 
technical means. As we explained last week – many of the decisions regarding 
how and how much to protect your design are economic. You need to balance 
how much you’ll spend implementing security features, how much you’ll lose if 
someone copies your design, and how much inconvenience for your customers 
(and support burden for you) might be caused by your security measures. You’ll 
also want to analyze the potential reliability and manufacturability impact of 
any security features you choose to incorporate.

Before we start building walls and fences, it pays to ask ourselves – “Who are 
the bad guys?” Obviously, we’re the good guys wearing the white hats. We 
want to create something beautiful, (…like maybe a hardware accelerator for 
cracking encryption algorithms… Oh wait! That’s a bad example...) and then 
make sure nobody steals it. Wearing grey hats, perhaps, are the companies 
that both create and defeat security hazards for a living. They’re an inevitable 
consequence of the value of technology. But who exactly is wearing the black 
hats? We need to understand the villains, the bad guys, these diabolical digital 
ne’erdowells who want to steal our hard-designed logic for their own insidious 
purposes.

A well-known classification system proposed in 1991 in the IBM Systems 
Journal says the bad guys fall into one of three basic categories: Class I 



Page 3

Copyright © 2005 Techfocus Media, Inc. All rights reserved.
FPGA and Structured ASIC Journal

– Clever Outsiders, Class II – Knowledgeable Insiders, and Class III – Funded 
Organizations. We all know Class I. He was the guy in the dorm room “next 
to ours” in EE or CS school. His primary motivation for cracking security was 
ego. He wanted to prove that he was smart enough to pull it off. Fortunately 
for everyone, his budget only amounted to what he could earn selling back his 
Mountain Dew cans at the grocery store. If he got really good – he got hired 
into Class II or III.

Class II is what most of us developing commercial applications are facing. 
Even Class II attackers can be quite well funded. They tend to be financially 
motivated, however, so if we can make breaking our security a non-profitable 
enterprise, we’ve conquered the bulk of Class II. Class II attackers will make 
use of state-of-the-art techniques such as “decapping” a chip and analyzing it 
with focused ion beams, thermal imaging, and other techniques. Non-invasive 
methods can also be used such as dynamic power analysis (DPA) - performing 
statistical signal processing on plots of power consumption data to find 
signatures of encryption keys loading into registers.

They also frequently attack the most vulnerable part of any security system 
– the human. Exploiting the human element is what has been called “rubber-
hose cryptanalysis” – a somewhat tongue-in-cheek term for torturing an insider 
to obtain crypto keys or other enabling information. Typically, rather than 
resorting to the rubber hose, Class II attackers rely on a much more practical 
(and legal) technique – corporate attrition. With Silicon Valley job tenures 
typically measured in months rather than years and corporate allegiances 
shifting as fast as stock options expire, so-called “security by obscurity” is 
practically impossible. If your system doesn’t correct for the former employee 
that now works for a competitor, you truly have no security at all.

Class III is a different story. These folks usually work for governmental 
agencies, have practically unlimited budgets and patience, and are motivated 
by forces like fear and paranoia. If you think your security is good enough to 
foil Class III, you’re probably wrong… and that’s exactly what they want you to 
think. Caveat hosee.

ASIC designs are among the most secure. Although companies like the 
aforementioned will happily delaminate, deconstruct, and analyze an ASIC 
design for you, (or for your competitors) it’s an expensive process. With a 
little cleverness, or a little help from friends like Cryptography Research, you 
can make the reverse engineer’s job a lot tougher. “There are a number of 
things we help customers do to make their ASICs more secure,” says Benjamin 
Jun, vice president of technology at Cryptography Research. “Depending on 



Page 4

Copyright © 2005 Techfocus Media, Inc. All rights reserved.
FPGA and Structured ASIC Journal

the design and the customer’s objectives, we have recommended a variety of 
approaches.” Techniques like foregoing the top layer of metal in order to put a 
shield in place, operating without scan, and adding encryption IP to the design 
are typically in the arsenal of the ASIC security conscious.

If your goal is storing data securely in your ASIC, consider technology from 
Kilopass, whose patented non-volatile storage technology works with standard 
CMOS processes and relies on a gate-oxide-based fuse to retain information. 
The company claims that the programming state of their storage element is 
almost impossible to observe with typical reverse-engineering techniques and 
that their storage is compact enough to be practical for keeping critical data on-
chip in a SoC ASIC.

As we mentioned last week, FPGAs represent both a security risk and a 
potential place to secure your design. In fact, there is considerable controversy 
of late on the best scheme for securing your FPGA-based IP. In our research, 
we have yet to find evidence that any of the main FPGA schemes has been 
defeated, so without passing too much judgment on the vendors’ claims, let’s 
look at the technology behind the various approaches.

First, the most common technologies associated with design security in FPGAs 
are non-volatile devices like antifuse and flash FPGAs. Antifuse FPGAs (like 
those made by Actel and Quicklogic) are widely regarded as the most secure. 
Antifuse states are almost impossible to discern, given that a tiny whisker 
of metal establishes the connection and that invasive inspection can easily 
break that whisker. The challenge is compounded by the fact that only a 
tiny percentage of the antifuses on any given die are actually involved in the 
configuration of the device. Potentially, millions of antifuses would have to be 
correctly read in order to reverse engineer an antifuse FPGA configuration.

Flash FPGAs also store their configuration without relying on an external 
memory. Again, the state of flash cells is extremely difficult to discern, although 
techniques do exist. Once again, in order to determine the configuration for an 
FPGA, potentially millions of flash elements would have to be correctly read by 
the attacker, and a very difficult task would still remain of determining which of 
those represented configuration information. Two companies, Actel and Lattice, 
market flash-based FPGAs (three if you count Altera’s Max II CPLD as an FPGA).

SRAM devices have long been regarded as less secure because they store their 
configuration bitstream in an external memory. In an unsecured scenario, it is 
reported that a second grader equipped with nothing more than crayons and 
bailing wire can copy the design. We don’t believe these claims (unless the 



Page 5

Copyright © 2005 Techfocus Media, Inc. All rights reserved.
FPGA and Structured ASIC Journal

second grader also has access to a logic analyzer, then we’re good to go.)

The axis of the current controversy, however, is defined by the apparently polar 
approaches taken by archrivals Xilinx and Altera in securing the bitstreams in 
their high-end SRAM devices. Both companies rely on encrypting the bitstream 
data stored in external memory and then decrypting it using a key stored in the 
FPGA itself. There the similarity ends.

Xilinx stores the encryption keys in volatile memory and keeps that memory 
active with an external battery. If the battery is disconnected, the keys are 
lost, and the FPGA returns to its native, blank state. Depending on your needs, 
this could potentially be a good thing or a bad thing. If you’re primarily worried 
about system reliability with security as a secondary concern, long-term 
dependence on a battery soldered into the system may be reason for concern. 
If security is your primary goal, you’ll be happy to know that your keys are 
erased (and thus protected) as soon as someone tries to disconnect the device 
for detailed inspection.

Altera’s recently announced strategy relies on non-volatile keys stored in 
poly-fuses on the FPGA. Since the keys are not volatile - with enough time 
and money (the order of magnitude of each being the subject of considerable 
debate), the key values could eventually be determined through invasive 
inspection by a determined attacker. Altera claims that there are considerable 
measures designed in to prevent such an attack from succeeding. We’d guess 
that might include hiding the bits at undisclosed locations on the die, burying 
them under layers of metal, and performing additional processing on the data 
so the raw keys are not stored directly in the fuses.

Advantages of the non-volatile approach, of course, are that the configurability 
of the device doesn’t rely on an external battery. This means that an FPGA 
with encryption keys loaded could not be re-used for another purpose without 
knowledge of those encryption keys. This also means that an in-system device 
could not be reprogrammed with an entirely different bitstream designed by the 
attacker – a potential problem in the Xilinx scheme if your goal is more tamper-
resistance than security.

Both schemes might theoretically be vulnerable to techniques such as DPA or 
EM monitoring, as the keys are XORed with the corresponding data inbound 
from the external memory, but the complexity of FPGAs and the amount of both 
EM and power noise (including possible noise injected for security purposes) 
would make such an attack very difficult.



Page 6

Copyright © 2005 Techfocus Media, Inc. All rights reserved.
FPGA and Structured ASIC Journal

In the end, you as the engineer are responsible for determining the type 
and amount of security required for your design. Remember to trust your 
own engineering expertise over marketing claims of vendors, and do your 
homework. Also remember to balance the complete list of considerations 
including the cost of protection – in ways such as IP licensing, consulting, 
processing time, convenience for customers, reliability, supportability, and 
manufacturability, the cost of a security failure, and the likelihood of an attack. 
Without examining all of these variables, you’re likely to end up with dangerous 
tunnel vision on issues like whether a security crack is theoretically possible 
rather than the engineering practicality of the whole problem. 

by Kevin Morris, FPGA and Structured ASIC Journal 

June 27, 2006 




