
ww ww ww .. dd ii ss cc rr ee tt ii xx .. cc oo mm
A d v a n c e d s e c u r i t y s o l u t i o n s f o r c o n s t r a i n e d e n v i r o n m e n t s

Security Implications of
Hardware vs. Software

Cryptographic Modules

White Paper

Discretix Technologies Ltd.

By Hagai Bar-El
Information Security Analyst
Hagai.Bar-El@Discretix.com

October 2002

Security Impl icat ions of Hardware vs. Software
Cryptographic Modules

Page 2 of 6

ABSTRACT
Cryptographic modules can be implemented either by hardware or by software.
Whereas software implementations are known for being easier to develop and to
maintain, when it comes to cryptographic modules or security-related applications
in general, software implementations are significantly less secure than their
hardware equivalents. The reason for this is mostly the fact that software
solutions make use of shared memory space, are running on top of an operating
system and are more fluid in terms of ease of modification.

INTRODUCTION
This white paper discusses the weaknesses that are inherent to software-based
cryptographic modules in relation to cryptographic modules that are hardware-
based. Other advantages and disadvantages of hardware vs. software approaches
are beyond the scope of this white paper. Each one of the following sections
focuses on one security aspect in which hardware and software implementations
of cryptographic modules differ.

MEMORY ACCESS PREVENTION
Software solutions of any sort cannot facilitate their own physical memory.
Therefore, software implementations are making use of externally available
memory, usually through services of an underlying operating system. When the
memory that is used by the application is provided externally, there is no
guarantee as to what other processes can access the same memory space.
Although most operating systems give some sort of random access memory
space protection, it must be remembered that this protection is guaranteed only
to the extent of the robustness of the operating system and its being free of
flaws. Secondly, memory protection is even more difficult and more lacking where
secondary memory is concerned.

Cryptographic modules are particularly sensitive to having their random access
memory space well protected. Most cryptographic algorithms and probably all
protocols require intermediate results to be stored, in some sort of a
“scratchpad”, during the execution of the module. If the contents of this
temporary storage are ever leaked the entire system can be easily compromised.
This is because this memory is storing values that may be very closely related to
the secret keys (or even the keys themselves). Therefore, the security level of a
software-based cryptographic module is upper-bounded by the security level of
the mechanism that protects the secrecy and integrity of the memory space it
uses. This latter security level often cannot even be assessed properly. Generally,
if the memory space that a cryptographic module uses is not in its own complete
control, its overall security level cannot be guaranteed.

Secondary memory often requires the same level of secrecy protection as primary
memory. It is usually used to store long-term keys and similar data (see chapter
Long-Term Key Storage). However, preserving the secrecy of secondary
memory contents on an application-shared platform is far from trivial. Real
protection for secondary storage can often be obtained only through the use of
encryption. Yet, when encryption is used it gives rise to the problem of storing
the encryption key securely.

Security Impl icat ions of Hardware vs. Software
Cryptographic Modules

Page 3 of 6

Hardware-based solutions can contain their own internally managed memory
space, which solves the problem of memory-space protection. Furthermore,
hardware solutions can be applied, for memory illegal access prevention, by
hardware methods, which are inherently more secure than operating system
services that are software-based in their nature.

INTEGRITY ASSURANCE
Software, as the name implies, is based on a set of instructions that are stored in
memory and are executed upon demand or prior instruction. Since the protection
of secondary memory is not guaranteed (see previous chapter Memory Access
Prevention), the integrity of the code itself cannot be guaranteed either. An
adversary can modify the application code either to cause it to malfunction or to
cause it to leak critical information. Software code alteration can be done either
manually, by changing specific instructions, or in an automated manner using
hostile code such as a virus or a Trojan horse running on the same platform or on
a platform, which has adequate access privileges.

Hardware-based solutions are safer in this respect for the code being burnt onto a
chip. Physically burning the source code is probably the only proof way of causing
it to be completely read-only, as source code of any cryptographic module should
be.

There are various ways in which software code can be tampered with either by
hostile content or by manual intervention. One interesting specific case, which is
relevant to ARM processors, is by the use of the GP-IO1 that is unique to ARM
processors. At a particular point of time, during power-up, the bus can be used to
reflect memory contents and assist in modification of code that is stored on the
host. Hardware-based solutions have the privilege of not being modifiable at any
point, including during the power-up stages.

REVERSE ENGINEERING
Software implementations are more easily readable by adversaries and are
therefore more susceptible to reverse engineering. Source code that cannot be
viewed cannot be reverse-engineered either. Since software implementations are
merely instructions that are stored in memory (see previous chapter Integrity
Assurance), and since the protection of this memory cannot usually be
guaranteed. An adversary who may attempt to reverse engineer the code can
read these instructions.

Reverse engineering of cryptographic modules that implement publicly known
algorithms and protocols is less risky than reverse engineering of other software
modules that may implement classified proprietary algorithms2. However, reverse
engineering of algorithms implementation can still cause significant damage to
the security level due to its enabling the discovery of implementation flaws. Flaws
that are discovered by an adversary who reverse-engineered the implementation
can be taken advantage of by exploitation (manual or programmed).

1 General-Purpose IO
2 This statement is brought based on security considerations only, completely disregarding loss of IP or other business damage
caused by the revealing of implementation code.

Security Impl icat ions of Hardware vs. Software
Cryptographic Modules

Page 4 of 6

RESISTANCE TO POWER ANALYSIS ATTACKS
Software based solutions are more vulnerable to attacks that are based on power
consumption analysis. Every single software command is mapped by the compiler
to a set of assembly language instructions that are well known and have a
defined pattern in terms of power consumption. These known patterns are easy
to identify using relatively simple power analysis techniques. By obtaining
information about the internal state of the module the attacker can build a
process to extract the secret key that is being used by the module.

Hardware-based solutions can apply special measures that mask the fluctuation
in power consumption, to prevent the attacker from collecting power consumption
information that can assist in the compromise of the secret key.

LONG-TERM KEY STORAGE
Key storage problems can be considered as a part of memory access problems,
which were discussed earlier. However, storage of long-term keys requires the
use of secondary memory and opens the opportunity for additional attacks.

Long-term keys should be stored while protected from compromise to their
secrecy or integrity. Moreover, since these keys are long-term (as opposed to
session keys), they should be stored in non-volatile memory. As this type of
memory can usually be read by external devices. Key encryption is used to
protect the long-term keys secrecy and integrity. The difficulty arises when the
key that is used to encrypt the long-term key needs itself to be stored securely.

Two options are common for the storage of the key-encryption-key. The first
option is to derive it from a user-supplied passphrase and not store it anywhere.
The key is reconstructed every time from the passphrase the user enters. If the
user enters a correct passphrase then the key will be reconstructed properly and
will be used for decryption of the long-term key. There are several drawbacks to
this technique, two of which are hereby presented: The first drawback is that this
technique cannot be applied for systems that need to work unattended, e.g.
without the presence of a user to type in the passphrase. The second drawback
arises from the low entropy of user-supplied passwords, if these cannot be forced
to be long and unpredictable. In the cellular environment, a passphrase is usually
a four or five digit PIN. The entropy of the generated key is therefore less than
that of 14 or 17 bits, respectively, forming a long-term key protection scheme
that is ridiculously weak.

A second approach is to encrypt the long-term key with an internal key, which is
stored somewhere in the application. By doing so, the designer is basing the
security of the system on the ability to hide the internal key properly. When using
this approach, software solutions are usually weak for their disability to provide
real “hiding places” where keys can be hidden. Since software is installed on
accessible memory spaces3, and since reverse engineering of code is often
difficult but more often feasible, keys that are hidden inside software code can
usually be retrieved after investing some level of effort.

When hardware implementation is concerned, the problem of key hiding has more
effective solutions. Internal keys can be burnt as a part of the hardware
implementation making them extremely difficult to extract. The internal key can

3 Generally, secrecy of source code cannot be assumed. Basing the security of a system on the secrecy of its implementation is
called “Security Through Obscurity” and is widely considered as an unsafe practice.

Security Impl icat ions of Hardware vs. Software
Cryptographic Modules

Page 5 of 6

also be stored in non-volatile memory, which is made inaccessible to other
applications by hardware means.

DEPENDENCE ON OS SECURITY

When an application is running on top of another lower-layer application (such as
an operating system) the higher-layer application’s security is by many means
dependent on the security level of the lower level application in terms of flaws. It
follows that, if a flaw is discovered in an operating system implementation, this
flaw is likely to lead to additional vulnerability of the application running on top of
it. In general every security problem of the operating system, either known or yet
unknown, may cause security problems with the cryptographic module
implementation. Good examples for this phenomenon are operating systems that
leak memory contents through swap files and flaws in memory management and
protection schemes of operating systems. Open operating systems or operating
systems that are providing high-level services are even more problematic in this
sense. The higher the level of services provided by the operating system, the
higher the potential is for these kinds of flaws.

Hardware implementations are not dependent on high-level operating system
services and are therefore not dependent on secure implementations of these
services.

LIMITATIONS RESULTING FROM THE USE OF DSP

Software implementations often make use of DSP circuits that are available to
allow for faster multiplications. DSP can provide faster multiplication of long
integers than regular software code and is therefore commonly used by software
implementations. The main limitation of DSP circuits is concerning the security
they can offer. DSP is an open implementation receiving inputs and giving
outputs through the publicly accessible bus. Using this mechanism for private key
operations is highly risky. Since multiplications are only some of the required
operations in public key cryptography, temporary values are left on the bus
between operations. The values can easily be revealed exposing the private key
value. Moreover, such values can be modified by an adversary prior to entering
the DSP to allow for signature forging.

The only way to avoid the inherent problems with DSP is by avoiding the use of
DSP entirely, as done by closed hardware solutions.

DISCRETIX CRYPTOCELL
Discretix proprietary product, the CryptoCell™, is a hardware-based
implementation of known asymmetric and symmetric ciphers, hash functions and
a standards-based random number generation module. The competitive
advantage of the CryptoCell™ is that by taking advantage of its running on
hardware, it offers reliable attack resistance with high performance on resource-
constrained environments.

Security Impl icat ions of Hardware vs. Software
Cryptographic Modules

Page 6 of 6

About Discretix

Discretix is a semiconductor intellectual property company that develops and
licenses advanced embedded security solutions for resource-constrained
environments, such as wireless devices and smart-cards, where stringent limits
apply to the cost, size and power consumption of the target devices.

Discretix technology has already been adopted by some of the major vendors of
wireless baseband and application chipset, as well as smart-card IC vendors.

Discretix Technologies Ltd.

Corporate
Headquarters
43 Hamelacha Street
Beit Etgarim
Poleg Industrial Zone
Netanya 42504
Israel
Tel: +972 9 885 8810
Fax: +972 9 885 8820
Email:
marketing@discretix.com

Representative in
Japan:
Triangle Technologies KK
Sogo-Hirakawacho Bldg.
4F 1-4-12
Hirakawacho Chiyoda-ku
Tokyo, Japan
Te l: +81 3 5215 8760
Fax: +81 3 5215 8765
Email:
japan.info@discretix.com

