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Abstract 

 

Mobile devices such as personal digital assistants (PDA’s), cell phones and pagers are 

becoming increasingly popular. Services provided by these Internet-enabled devices 

include sending emails and shopping online. These mobile devices also contain user’s 

confidential personal information such as phonebook and credit card information. As a 

result, the security of these wireless embedded systems operating in hostile environments 

is becoming more challenging. Although confidential data can be protected using 

cryptographic algorithms, there have been increased concerns of the vulnerabilities of 

cryptographic algorithms to side channel attacks. Power analysis and EM analysis have 

been shown in previous research to be able to break conventional symmetric key 

algorithms implemented on smart cards. However, no conclusive experiments have been 

reported so far on the security of PDA’s. This thesis investigates the threat of EM 

analysis on a PDA running AES encryption in order to better protect these systems from 

adversaries in future research. 

 

This thesis presents for the first time conclusive EM analysis results of AES 

implementation on a PDA. This thesis is also the first one to propose a frequency-based 

side channel attack that is efficient even when traces are misaligned in experiments, 

whereas the previously researched DEMA fails in such condition. This thesis makes 

progress in side channel attacks and is important for future wireless embedded systems, 

which will increasingly demand higher levels of data security measures.  

 

Results from this thesis show that the secret key can be retrieved successfully 

using the new frequency-based differential EM analysis. In addition, the proposed first-

order frequency attack is capable of defeating the desynchronization countermeasure that 

randomly inserts delays.  
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1 Introduction 

Mobile devices such as personal digital assistants (PDA’s), cell phones and pagers are 

becoming increasingly popular.  Being Internet-enabled, these devices allow mobile users 

to send emails and even shop online. Confidential data are being exchanged wirelessly 

under hostile environments. As a result, the data security of wireless embedded systems is 

becoming more challenging. Although confidential data can be protected using 

cryptographic algorithms, there have been increased concerns of the vulnerabilities of 

cryptographic algorithms to side channel attacks.  

 

 Power analysis first introduced by Kocher et al. [1] is one of the powerful side 

channel attacks that exploit information leaked from a cryptographic device. Another 

powerful side channel attack is electromagnetic analysis. Power analysis and EM analysis 

have been shown to be able to break conventional symmetric key algorithms 

implemented on smart cards. However, there is a lack of research in the security of 

PDA’s. This thesis aims to explore the feasibility of extracting the secret key of 

conventional symmetric key algorithms by analyzing EM signals from PDA’s. 

1.1 Motivation 

Side channel attacks are very powerful cryptanalysis techniques because they break a 

cryptosystem at the implementation level. Hence, they require less computational power 

comparing to conventional cryptanalysis which defeats a cryptosystem at the algorithmic 

level. Side channel attacks allow adversaries to pull extremely small signals from noisy 

data, often without even knowing the design of the target system. As a result, these 

attacks are of particular concern for mobile devices that must protect secret keys while 

operating in hostile environments. However, research in the past focuses mainly on smart 

cards’ security. There is a lack of conclusive experiments in the subject of the security of 

PDA’s. Comparing to smart card, a PDA has a much more complex architecture. Its 

processor operates at a higher clock frequency. With a more complex operating system, 

some processes are executed in a parallel fashion. It also consists of other components 

such as LCD screen, radio antenna and receiver, infrared port, non-volatile memory, etc. 



Chapter 1 – Introduction 

2 

These components are closely located on the PDA. As a result, performing side channel 

attacks on PDA’s is a more difficult problem, since there could be interference caused by 

these neighboring components when measuring EM radiation from the processor. The 

motivation of this thesis is to examine the threat of side channel attacks on PDA’s 

running symmetric key algorithms in order to better protect these systems from 

adversaries in future research.  

1.2 Problem Description 

In this thesis, problems of performing side channel attack to extract the secret key of 

symmetric key algorithms implemented on wireless embedded systems are addressed. 

The first problem being addressed is the lack of conclusive experiments on the security of 

AES implementation on PDA’s. This thesis presents results of power analysis and EM 

analysis on an ARM Integrator/C7TDMI core module and a PDA running the Rijndael 

encryption algorithm [2]. 

 

The second problem being addressed is the lack of methodologies to overcome 

experimental issues. There are lots of problems encountered in experiments such as 

environmental noise, equipment noise, etc. Among all the experimental issues, 

misalignment of traces is the most severe problem encountered while measuring EM 

signals from a PDA.  If spikes are slightly out of alignment in time, they will cancel out 

rather than reinforced when averaging. Misaligned traces could cause large spurious 

peaks in a differential trace causing the previously researched DEMA to fail. This thesis 

addresses this severe issue by proposing a new side channel attack technique called the 

Differential Frequency Analysis (DFA), which does not require perfect alignment of EM 

traces, thus supporting attacks on complex wireless embedded systems.  

 

The third problem being addressed is the difficulty of measuring power 

consumption from real embedded devices. Measuring the power drained by a processor 

requires tampering the device. Due to the lack of public information about the PDA under 

test, it is difficult to locate and access the power pins on the complex motherboard of the 

device to measure the power consumption of the processor. Therefore, EM analysis is the 
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preferred attack for the PDA since it is a non-invasive attack as it consists in measuring 

the near field without any modification to the PDA. This thesis solves this problem by 

alternatively analyzing EM radiation from the PDA to determine whether it leaks any 

sensitive information. 

 

The last problem being addressed in this thesis is to examine whether some of the 

existing countermeasures for first order differential analysis are effective against the 

proposed frequency-based attack and a previously researched attack called FFT 2DPA 

proposed by Waddle et al. [13]. The desynchronization countermeasure [21] and the Split 

Mask countermeasure [9] are implemented for the Rijndael algorithm.  

1.3 Thesis Overview 

The first chapter of the thesis consists of a brief introduction, the motivation of the thesis, 

and the problem description. The second chapter provides some background information 

and presents some previous research on the subjects of power analysis, EM analysis, and 

Rijndael algorithm. Also, it summarizes the contribution of this thesis based on what is 

missing in previous research. Chapter 3 introduces the new side channel attack technique 

called the Differential Frequency Analysis (DFA), which is the first attack that analyzes 

signals in the frequency domain. Chapter 4 introduces the experimental setup and 

presents the experimental results from both the ARM Integrator/C7TDMI core module 

and the PDA. Chapter 5 discusses the experimental results, compares the DFA attack 

with previously researched side channel attacks, discusses the effectiveness of the DFA 

attack, and presents work to be done in the future. Chapter 6 concludes with the findings 

of this thesis.  
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2 Background Information and Previous Research 

This chapter first provides background information on symmetric key cryptography and 

side channel attacks followed by previous research on the Rijndael algorithm, power 

analysis, and EM analysis. The chapter is concluded by outlining the contribution of this 

thesis to the field of side channel attacks. 

2.1 Introduction to Symmetric Key Algorithms 

Since 1977, the Data Encryption Standard (DES) [24] has been the most widely used 

symmetric key algorithm. Due to the fast development and increasing computation power 

of computers, DES was broken using a brute force attack in 1997. It is not secure 

anymore nowadays. Therefore, the National Institute of Standards and Technology (NIST) 

of the United States initiated the development of Advanced Encryption Standard (AES) 

[2], also known as Rijndael, to replace DES. This new encryption standard proposed by 2 

Belgian researchers, Vincent Rijmen and Joan Daemen, has improved security over DES 

and fast computation performance. It is widely implemented on mobile devices. Hence, 

this thesis focuses primarily on the security of the Rijndael algorithm implemented on 

wireless devices. 

 

Advanced Encryption Standard (AES) is a symmetric block cipher that can 

process data blocks of 128 bits, using cipher keys with lengths of 128, 192, and 256 bits. 

The basic unit for processing in AES is a byte. The algorithm’s operations are performed 

on a two-dimensional array of bytes called the State. The State consists of four rows of 

32-bit word. The number of rounds to be performed during the execution of AES is 

dependent of the key size. The number of rounds is 10, 12, and 14 for key sizes of 128, 

192, and 256 bits of key length respectively. Each round is composed of four different 

byte-oriented transformations: byte substitution using a substitution table (S-Box), 

shifting rows of the State array by different offsets, mixing the data within each column 

of the State array, and adding a Round Key to the State. Figure 1 below illustrates one 

complete AES encryption. The transformations within rectangular box are repeated 
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according to the number of rounds, i.e. the cipher key size. For more details of the 

algorithm, see [2]. 

Figure 1: AES Encryption 

 

Gladman suggest that Rijndael can be implemented very efficiently on processors 

with 32-bit words using tables [20]. In his implementation, the SubByte, ShiftRow, 

MixColumn and AddRoundKey are combined as only 1 single transformation. Five 

tables each of 256 32-bit words are defined to replace the original AES 8-bit S-Box. For 

details about how the four different byte-oriented transformations are combined as only 1 

single transformation, refer to [20]. All AES test programs in this thesis are written with 

the optimized software implementation by Gladman. 

2.2 Introduction to Side Channel Attacks 

2.2.1 Information Leakages 

Secret information about cryptographic devices can be revealed from analyzing power 

consumption and EM emanation of these devices. Most modern cryptographic devices 

are implemented using semiconductor logic gates, which are constructed out of 

transistors. Electrons flow across the silicon substrate when charge is applied to or 

removed from a transistor’s gate, and therefore, consuming power. According to 

ShiftRow 

MixColumn

Ciphertext 

Round
Key 1 

SubByte

Plaintext 

Round
Key i 
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Messerges’ assumption [4], the processor will leak information about the Hamming 

weight of the data being processed. Processing data with higher Hamming weight will 

consume more power than processing data with lower Hamming weight and that this 

relationship is roughly linear. To measure a circuit’s power consumption, a small resistor 

is inserted in series with the power or the ground input. The voltage difference across the 

resistor divided by the resistance yields the current. Therefore, the power consumption 

can be determined [1].  

 

Similarly, EM emanations arise as a consequence of current flows. In CMOS 

devices, current only flows when there is a change in the logic state of a device. As a 

result, EM emanations can track number of bit transitions, revealing the Hamming weight 

of data being manipulated [5]. 

2.2.2 Power Analysis and Electromagnetic Analysis 

Simple Power Analysis (SPA), Differential Power Analysis (DPA), Simple 

Electromagnetic Analysis (SEMA), and Differential Electromagnetic Analysis (DEMA) 

are side channel attacks that enable extraction of a secret key stored in cryptographic 

devices. The attacker monitors the power consumption or the EM emanation from such 

cryptographic devices, and then analyzes the collected data to extract the key. These side 

channel attacks aim at vulnerabilities of implementations rather than algorithms which 

make them so powerful since adversaries are not required to know the design of the target 

system.  

 

Simple power analysis (SPA) [1] is a technique that involves directly interpreting 

power consumption measurements collected during cryptographic operations. No 

statistical analysis is required in such attack. SPA can yield information about a device’s 

operation as well as key material. It can be used to break cryptographic implementations 

in which the execution path depends on the data being processed.  

 

Similarly, in a SEMA attack [3], an adversary is able to extract compromising 

information from a single EM sample. If a computation makes use of conditional 
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branches based on secret information, then on a compromising EM signal, this can be 

observed as relative shifts in the distances between major computational structures. In 

some cases, these shifts may be sufficient to reveal the branch taken, which in turn 

confirms the value of the secret information. This is analogous to what has already been 

demonstrated for simple power analysis. Thus, conditional statements in the code could 

provide valuable opportunities for both SPA and SEMA.  

 

In a differential power analysis (DPA) attack [1], the adversary monitors the 

power consumed by the cryptographic devices, and then statistically analyzes the 

collected data to extract the key in contrary to SPA. In a first order DPA attack, the 

attacker monitors power consumption signals and calculate the individual statistical 

properties of the signals at each sample time. More specifically, the attacker identifies 

some intermediate value in the cryptographic computation that is correlated with the 

power consumption and dependent only on the plaintext and some small part of the key. 

A collection of power traces are then gathered throughout a series of encryptions of 

different plaintexts. Next, the attacker will divide the traces into groups according to the 

intermediate value predicted by current guess at the key and the trace’s corresponding 

plaintext. If the averaged power trace of each group differs noticeably from the other, it is 

likely that the current key guess is correct. Incorrect key guesses should result in all 

groups having very similar averaged power traces, since incorrectly predicted 

intermediate value will not be correlated with the measured power traces. Figure 2 

demonstrates steps involved in a DPA attack. 

 

Trace Partitioning
(according to key, plaintext 

and intermediate value)

Compute 
Differential Time 

Signal
Key Guess Result

For All Keys

 

Figure 2: Differential Power Analysis (DPA) Overview 
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In a higher order DPA attack [1], the attacker calculates joint statistical properties 

of the power consumption at multiple sample times. One drawback to high-order DPA is 

increased memory and processor requirements because of the need to store multiple 

samples for a single DPA computation. Knowledge of the encryption algorithm and 

specific implementation is more critical in high-order DPA than first order. In most cases, 

the attacker needs to know specific points of execution where joint statistics can be 

meaningfully computed.  

 

DEMA is the analogy for DPA [3]. In this attack, instead of monitoring the power 

consumption, the attacker monitors the electromagnetic emanations from the 

cryptographic devices, and then same statistical analysis as DPA is performed on the 

collected EM data to extract secret parameters.  

2.3 Previous Research on Attacks on Embedded Systems 

This purpose of this section is to present some previous research related to the subjects 

discussed in this thesis. 

2.3.1 Previous Research on SPA and DPA 

Power analysis, including SPA and DPA, was introduced by Kocher at al. in [1]. This 

paper describes specific methods for analyzing power consumption measurements to find 

secret keys from tamper resistant devices. They had successfully measured the power 

consumption of a DES operation on a smart card. Their experimental results showed that 

SPA can reveal the sequence of instructions executed. The 16 DES rounds are clearly 

visible from a SPA trace that they have captured. In addition, the authors presented 

experimental results on DPA of DES implementation. They had successfully extracted 

the secret key used in the DES encryption algorithm. Kocher et al. illustrated that DPA 

allows adversaries to extract secret information without even knowing the design of the 

target system. Goubin et al. later presented a more detailed DPA attack methodology in 

[7]. The authors also showed a SPA trace where one can see distinctively 16 rounds of 

DES computation. They also published experimental results on DPA of DES on a typical 

smart card. However, as one can see, the security of the newly developed encryption 



Chapter 2 – Background Information and Previous Research 

9 

standard, AES, against power analysis is never discussed in both literatures ([1] and [7]). 

In [10], Golić described a DPA attack methodology on AES. However, no real power 

measurements were presented in his work. 

2.3.2 Previous Research on SEMA and DEMA 

The past research has been mainly on power analysis. EM analysis also needs to be 

understood. Quisquater et al. first discussed EM analysis on smart cards in [5]. They 

proposed that a processor can leak information by different ways; not only by power 

consumption but also by electromagnetic radiation. The authors developed the 

continuation of Kocher’s ideas by measuring the field radiated by the processor. They 

proposed that for a non-intrusive attack, EM analysis can be more precise than power 

analysis. The authors also suggested that EM analysis is strongly dependent on the 

architecture of the chip, and the knowledge of the internal circuitry of the processor 

facilitates the work. To measure the EM radiation, they used a simple flat coil so the 

variations of the electromagnetic field induce a current at the bounds. The sensor is 

placed under the smart card in the very close field. Again, no real experiments of SEMA 

or DEMA were put into practice, so no results were presented in their work.  

 

Gandolfi et al. later reported conclusive EM analysis results in [11]. They used 

tiny hand-made probes, solenoids made of a coiled copper wire of outer diameters 

varying between 150 and 500 microns, for their EM measurements. From their 

experimental findings, they had pinpointed that the CPU radiates the most informative 

signal, in other words, the CPU is the most data-dependent component. The authors also 

stressed the importance to perform measurement as closely as possible to the chip. They 

suggested to decapsulate a chip since decapsulation offers 2 important advantages. First 

of all, the probe’s coil can be lowered so as to touch the passivation layer and thereby 

capture the highest possible field once the chip is bare. Secondly, the chip becomes 

optically visible and its specific blocks can be pinpointed more accurately. In this work, 

DEMA results of DES from an 8-bit CMOS microcontroller were presented. Note that 

they did not perform decapsulation to the chip of the CMOS controller in this particular 

experiment. However, they were still able to retrieve the secret key of the DES 
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encryption algorithm. In addition, Gandolfi et al. compared DEMA results with DPA 

results in their paper. According to their experimental findings, although more noisy, EM 

measurements yield better differentials than power signals. DEMA’s signal-to-noise ratio 

was higher than that of DPA. The correct guess identification was easier, as there were no 

false alerts due to erroneous peaks.  

 

Agrawal et al. presented results illustrating various types of EM emanations in [3]. 

According to them, there are two categories of EM emanations: direct and unintentional 

emanations. Direct emanations result from intentional current flows, whereas 

unintentional emanations are caused by coupling effects between components in close 

proximity. Nonlinear coupling between a carrier signal and a data signal results in the 

generation and emanation of an amplitude modulated (AM) signals and also angle 

modulated (FM) signals. The authors suggested that exploiting unintentional emanations 

can be easier and more effective than trying to work with direct emanations. They also 

suggested that AM demodulated signals contain much more information. A useful rule of 

thumb is to expect strong carriers at odd harmonics of the clock. According to Agrawal et 

al., EM signals propagate via radiation and conduction. All EM emanations are measured 

either in the near field or in the far field, both away from the smart card unlike [5] and 

[11]. Radiated signals are best captured by placing near field probes or antennas made of 

small plate of a highly conducting metal like silver or copper as close as possible or at 

least in the “near field” to the device, i.e. no more than a wavelength away. Capturing 

conductive EM emanations requires current probes similar to those used for power 

analysis and subsequent signal processing to extract them from the stronger signals. They 

had discovered that apart from the relatively low frequency, high amplitude power 

consumption signal, there are faint higher frequency AM modulated carriers representing 

conductive emanations as well. In this work, unlike [5] and [11], they had successfully 

demonstrated DEMA attacks of DES on smart cards by AM demodulating the raw EM 

signal at different intermediate carrier frequencies (harmonics of the clock frequency). 

 

Most research on side channel attacks so far focus mainly on DES 

implementation. Experimental results on DEMA on AES were finally presented by 
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Carlier et al. in [12]. They also launched the attack on FPGA’s instead of smart cards. No 

decapsulation was performed on the FPGA. They used solenoid wires of copper 

consisting of a dozen of spires with a diameter of approximately 1 mm for their EM 

measurements. They placed the probe as close as possible to the FPGA to increase the 

magnetic flux collected by the probe. It is also interesting to note that all bytes are 

processed in parallel in FPGA’s. According to the findings of Carlier et al., for a specific 

probe position, only specific bits leakage can be detected. So, the bias spike in the DEMA 

signal can disappear if they modify the specific bit attacked in their partition function. 

This phenomenon can explain why EM analysis is not disturbed by the parallel 

computation effect, unlike with power measurements. Their results showed the 

effectiveness of EM analysis against AES on FPGA. 

 

As one can see from all previous research discussed so far, the main focus was in 

the vulnerability of DES implementation on smart cards, 8-bit processors, and FPGA’s. 

Until now, the security of AES implementation on 32-bit processors and PDA’s are never 

studied. 

2.3.3 Previous Research on Side Channel Attack Countermeasures 

Many countermeasures have been proposed in the past to protect symmetric key 

algorithms implementation against power analysis and EM analysis attacks. Such 

countermeasures fall into 2 categories: signal strength reduction and signal information 

reduction. First of all, an example of a signal strength reduction countermeasure can be 

the use of shielding [5] to reduce the strength of compromising signals available to an 

attacker.  

 

Secondly, examples of signal information reduction countermeasures use mainly 

randomization techniques in computation in order to substantially reduce the 

effectiveness of statistical attacks using the available signals. Many randomization 

techniques have been proposed for securing conventional symmetric key algorithms, such 

as DES and AES, against side channel attacks. Daemen et al. proposed the 

Desynchronization countermeasure [21] for Rijndael. The main idea behind this 
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countermeasure is if the sequence of instruction is not fixed but changes from cipher 

execution to cipher execution, e.g. by inserting dummy instructions based on some 

modifying parameter, the DPA attack no longer works. Chari et al. proposed a Secret 

Splitting technique in which data is divided into k shares [6]. A similar Duplication 

Method was proposed as a particular case by Goubin and Patarin [7]. Furthermore, 

Messerges introduced the Masking Method which involves masking the secret key by 

XORing with a random mask [4]. Itoh et al. proposed the Fixed Value Masking Method 

[8]. This is an improved countermeasure of Messerges’ Masking Method. With this 

method, the encryption process is faster and less RAM size is required. This is achieved 

by randomly choosing one mask value from a fixed set of mask values previously 

prepared and stored in the ROM. Gebotys et al. presented a low energy masking 

countermeasure for symmetric key in [9] which avoids large overheads of table 

regeneration or excessive storage unlike [4] and [8]. Although there exist a large number 

of protection mechanisms, most of the above countermeasures have never tested against 

side channel attacks experimentally. 

2.3.4 Previous Research on High Order Side Channel Attacks 

Countermeasures that prevent first order attacks may not be effective against higher order 

attacks. The effectiveness of high order attacks also needs to be put in practice. In [4], 

Messerges first presents a second order attack on the masking countermeasure. He 

launched the attack on an ST16 smart card. His findings draw attention to the 

powerfulness of higher order DPA. In high order DPA, knowledge of the encryption 

algorithm and specific implementation is more critical than first order. The attacker needs 

to know specific points of execution where joint statistics can be meaningfully computed. 

One drawback to high-order DPA is increased memory and processor requirements 

because of the need to store multiple samples for a single DPA computation.  

 

To overcome the increased memory and processor requirements, Waddle et al. 

propose a more efficient second-order power analysis in [13]. Two attacks, Zero-Offset 

2DPA and FFT 2DPA, are presented in their work. Their work is able to defect the 

masking countermeasure while minimizing computation resource requirements in terms 
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of space and time. There is no need to obtain power measurement at multiple sample 

times. Once again, no real measurements are presented by the authors.  

2.3.5 Previous Research on PDA’s 

Kingpin et al. reported security analysis on PDA’s in [33]. In their work, the threat of 

malicious code and virus attack was investigated. The authors provided a summary of the 

various types of malicious code: viruses, Trojan horses, and worms. They also detailed 

the risks of weak system password storage and backdoor debug modes inherent in Palm 

OS. However, attacks presented in [33] are specific to the Palm operating system (OS) 

software and hardware platform. PDA’s security against side channel attacks is not 

reported in this literature. 

2.4 Contribution of Thesis 

From all the previous research presented in this chapter, one can see that research in the 

past focuses primarily on the security of smart cards’, 8-bit processors, and FPGA’s. No 

research has been done to study the threat of side channel attacks on 32-bit processors 

and PDA’s. As mobile devices are becoming more and more popular, attacks on these 

PDA’s are big concerns and certainly need to be addressed. Furthermore, even though 

confidential data on these embedded systems are protected using conventional symmetric 

key algorithms, numerous researches have already broken the DES implementation using 

both power analysis and EM analysis. Again, most conclusive experimental results 

presented so far are attacks on DES implementation. As AES becomes more widely 

implemented, its security also needs to be addressed. Therefore, the contribution of this 

thesis is to investigate the threat of EM analysis on PDA’s in order to better protect these 

systems from adversaries in future research. This thesis presents for the first time EM 

analysis results of AES implementation on an ARM Integrator/C7TDMI core module a 

PDA both with 32-bit processors.  

 

It is also important to note that experimental issues such as noise and equipment 

limitation are never discussed in all previous research. No methodology has been 

proposed to overcome these experimental issues. This thesis is also the first one to 
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address experimental issues encountered in PDA experiments. Since PDA has a more 

complex circuitry and operating system than smart cards, there is a problem when 

capturing EM traces on the oscilloscope where most EM traces measured are temporally 

misaligned. The contribution of this thesis is to address the severe issues of trace 

misalignment on PDA experiments. This thesis is the first one to propose a side channel 

attack called the Differential Frequency Analysis (DFA), which does not require perfect 

alignment of EM traces, thus supporting attacks on real embedded systems. This thesis 

also compares the characteristics of EM emanation with power consumption using the 

ARM Integrator/C7TDMI core module. The Differential Frequency Analysis (DFA) can 

be applied to both power analysis and EM analysis. 

 

As one can see that most countermeasures proposed in the past are rarely applied 

to the AES implementation, the effectiveness of these countermeasures needs to be put in 

practice. Thus, this thesis implements the desynchronization countermeasure [21] and the 

Split Mask countermeasure [9] on the Rijndael algorithm. The effectiveness of these 2 

countermeasures against the proposed frequency-based attack (DFA) and a previously 

researched high order attack called FFT 2DPA proposed by Waddle et al. [13] is 

examined. 
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3 Differential Frequency Analysis 

The purpose of this chapter is to introduce a new side channel attack on Rijndael 

encryption called Differential Frequency Analysis (DFA). This chapter first introduces 

why this attack is being pursued. Subsequently, attack methodology and theory are 

presented. The last section of this chapter compares the attack methodology of DFA with 

previously researched side channel attacks: DEMA, DSA, and FFT 2DPA. 

3.1 Introduction 

This thesis proposes a new side channel attack called Differential Frequency Analysis 

(DFA). This technique is a modified version of Kocher’s differential power analysis [1]. 

Instead of computing the differential signals in the time domain, this technique is 

performed in the frequency domain by calculating the differential power spectral density 

(PSD) signal. The reasoning of analyzing signals in the frequency domain is that 

sometimes EM or power traces captured are temporally misaligned. As a result, 

differential electromagnetic analysis (DEMA) or differential power analysis (DPA) fails. 

When spikes are slightly out of alignment in time, they will cancel out rather than 

reinforced when averaging. On the other hand, the proposed DFA is efficient in retrieving 

the secret key successfully even the problem of trace misalignment is present. In addition, 

it is shown experimentally by Agrawal et al. in [3] that the Fast Fourier Transform (FFT) 

of EM signals contain useful signal information suggesting the validity of analyzing 

signals in the frequency domain. The side channel attack presented in this thesis is 

intended to resolve the difficulty of performing first order differential analysis on real 

embedded systems where uncorrelated temporal misalignment of traces is a big concern. 

Essentially, the Differential Frequency Analysis can be applied on both EM and power 

traces. For EM analysis, the attack is called the differential EM frequency analysis 

(DEMFA). As for power analysis, the attack is called the differential Power frequency 

analysis (DPFA). 



Chapter 3 – Differential Frequency Analysis 

16 

3.2 EM and Power Side Channels 

The security of an ARM Integrator/C7TDMI core module and a wireless PDA are 

examined in this thesis. Before presenting the DFA attack methodology, this section 

discusses the side channels available from these 2 devices under test. 

  

Both power and EM side channels are available from the ARM 

Integrator/C7TDMI core module. The power consumption of the ARM processor core is 

measured in the form of current in this thesis. Since the amount of voltage drawn on the 

ARM processor core is 3.3V, the current consumption can be easily converted to power 

consumption by multiplying the current with the supply voltage. It is easy to measure the 

power consumption of the ARM core processor since the evaluation board provides a 

number of easily accessible test points that can measure the current drawn by the 

ARM7TDMI processor core. EM signals can also be obtained from the processor by 

simply placing an EM probe on top of the processor for best signal quality. 

 

Comparing to the ARM Integrator/C7TDMI core module, the PDA has a much 

more complex architecture. Its processor operates at a higher clock frequency. It also 

consists of other components such as LCD screen, radio antenna and receiver, non-

volatile memory, etc. Due to the lack of public information about the PDA under test, it is 

difficult to locate the power pins on the complex motherboard of the device to measure 

the power consumption of the processor. In addition, measuring the power consumed by 

the processor requires modifying the device under test. Therefore, EM analysis is the 

preferred attack for the PDA since it does not require any modification to the PDA. 

Therefore, only the EM side channel is available from the PDA. 

3.3 Methodology 

This section introduces the attack methodology of Differential Frequency Analysis 

(DFA). Once the power consumption or EM emanation are captured from the device 

under test, they are processed and analyzed to extract secret information. To perform 

Differential Frequency Analysis (DFA), an attacker first observes n AES encryptions and 

capture T1…n[1…m] EM or power traces containing m sample points each. In addition, the 
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adversary keeps track of the plaintexts P1…n. No knowledge of the ciphertext is required; 

this is a known-plaintext attack. Figure 3 gives an overview of the DFA attack. Unlike 

Figure 2, a pre-processing step is needed in this new frequency-based attack. 

 

Pre-Processing
(Compute PSD) Trace Partitioning

Compute 
Differential PSD 

Signal
Key Guess Result

For All Keys, K={0, …,255)

  

Figure 3: Differential Frequency Analysis (DFA) Overview 

3.3.1 Pre-Processing Stage 

The DFA attack requires a pre-processing stage to transform signals from time domain to 

frequency domain. In this stage, it involves calculating the power spectral density (PSD) 

for all traces. To calculate the power spectral density of a trace, first perform Fast Fourier 

Transform (FFT) on the trace T. Then the squared ₤2–norm or the complex conjugate of 

the complex number, FFT(T), is computed. 

3.3.2 Trace Partitioning 

After the pre-processing stage, partition the PSD of traces T1…n[1…m] according to a 

selected bit, b, at the output of one of the S-Boxes in the first round of AES encryption. 

For each trace, group the trace that has bit b equal to 0 to subset 0 and vice-versa to 

subset 1 according to its plaintext and the key guess. The DFA partition function D(P, b, 

K) is defined as computing the value of bit 0 ≤ b < 8 of the S-Box output in the first round 

of AES encryption for plaintext P, where the 8-bit key entering the S-Box corresponding 

to bit b are represented by 0 ≤ K < 28. Figure 4 illustrates how traces are grouped in the 

attack. 
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Figure 4: Trace Partitioning in 1st Round of AES Encryption 

3.3.3 Computing Differential Power Spectral Density Signal 

Now, the main component of this new frequency-based differential analysis begins. In 

this step, first compute the average of PSD for both subsets. Then, calculate the 

differential PSD signal by subtracting the averaged PSD of subset 0 from the averaged 

PSD of subset 1. Note that this differential PSD signal is computed in a similar way as 

the normal differential time signal found. The only difference is that the frequency 

domain signals are used instead of the raw time domain signals. Then for each frequency, 

f, of the differential PSD signal, sum up all the spikes that are bigger than 2 times of the 

standard deviation threshold signal (2*STD_R). 

 

To quantitatively decide whether the differential PSD signal is significant, it is 

important to pick a threshold signal. A good threshold signal would be a constant 

multiple k of the standard deviation of means of power spectral density of subset 0 and 

subset 1 (STD_R). This threshold signal is served to minimize the impact of false spikes 

and to reduce the probability of error. The STD_R is a measure of dispersion of a set of 

traces from its mean. If the STD_R is high at some point time, it means that there is 

possibly more noise in the traces at this particular time. Therefore, by comparing the 

differential PSD signal with 2 times of the STD_R threshold signal, one can evaluate if a 

spike in the differential PSD signal is significant while minimizing the impact of false 

Key (K) 

 

S-Box in 

1st Round 

of AES 

Encryption 

Plaintext (P) 

Partition Function D(P,b,K)

Bit b 
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Subset 1 
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peaks. Figure 5 below illustrates the total area outside the 2*STD_R region for a correct 

and a wrong key guess.  

 

 

Figure 5: Comparing Differential PSD Signal with 2*STD_R 

 

In Figure 5, the area shaded with lines represents the amount that the differential 

signal of a correct key guess exceeds the threshold signal (2*STD_R). And the solid 

shaded area represents that for an incorrect key guess. Although both differential signals 

have significant peaks, the area of spikes outside the range of 2*STD_R for the correct 

key guess is much greater than that of the wrong key. To illustrate how the threshold 

signal can minimize the impact of false peaks, let us take a closer look at a false peak 

pointed by an arrow in the diagram. It is interesting to note that this peak of the correct 

differential signal at point 3 is not significant because it is smaller than the standard 

deviation threshold signal. The peak in the threshold signal at point 3 implies that the EM 

traces are noisy at this particular point. As a result, by comparing the differential signal 

with the STD_R threshold signal, one can minimize the impact of false peaks. The 

pseudo-code of the DFA attack methodology is presented next. 
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3.3.4 Key Guess 

If the key guess K is incorrect, the bit computed using the partition function D will differ 

from the target bit for about half of the plaintexts Pi. The partition function is thus 

effectively uncorrelated to what was actually computed by the target device. If a random 

function is used to divide into 2 subsets, the difference in the averages of the subsets 

should be negligible and should be smaller than the range of 2 times of the standard 

deviation threshold region. 

 

On the other hand, if the key guess K is correct, the computed value for D will 

equal to the actual value of the target bit b with probability 1. The partition function is 

thus correlated to the value of the bit manipulated in the first round of AES encryption. 

There should be significant differences between the average of PSD for the subset 0 and 

subset 1. One would expect to see more spikes outside the range of 2*STD_R. 

 

There are only 28 or 256 possible keys for an 8-bit S-Box in AES. By comparing 

the differential PSD signal of all 256 possible keys, the correct key should have the most 

significant differential PSD signal among all. The correct key K can thus be identified 

since it should have the largest sumPeak(K) value calculated in DFA() among all 256 key 

values. 

 

Another advantage of DFA is the possibility of reducing the key search space. For 

instance, a brute-force attack is impossible for an AES 128-bit key since there are 2128 

possible key searches. On the other hand, the Differential Frequency Analysis is only 

performed on each of the 8-bit S-Boxes. For AES 128-bit, there are 16 S-Boxes in total. 

Therefore, the key search space is reduced to 16 * 256 = 4096. 
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3.4 Theory 

This section presents the theory that justifies the proposed Differential Frequency 

Analysis attack. The causes and effects of temporal misalignment of traces are also 

discussed. 

3.4.1 Assumptions 

There are a few important assumptions made in the theory of DFA. The first assumption 

is that all AES encryption algorithm executes in constant time, regardless of the values of 

the plaintexts and the master key. If this is not the case, then the attack would be very 

difficult to accomplish. The second assumption is that the attacker has knowledge and 

control of the input plaintexts for the Rijndael encryption. The third assumption is that 

there is no distortion in the shape of all waveforms in experimental measurements. All 

EM traces captured in this thesis are only temporally shifted due to reasons to be 

discussed in the following section. The forth assumption is that averaging also helps to 

reduce noise from the chip, environment and measurement equipments.  

3.4.2 Temporal Misalignment of Traces in Experimental Results 

Performing first order differential analysis on real embedded systems is always difficult 

where uncorrelated temporal misalignment of traces is a big concern. This section 

describes the causes and effects of misalignment of traces in experiments. Note the 

misalignment problem is specific to the PDA used in this thesis. Other embedded systems 

might suffer from different experimental problems. 

3.4.2.1 Causes of Misalignment of Traces in Experiments 

The architecture of the device under test can cause various experimental problems. It is 

observed that the experiments on the ARM Integrator/C7TDMI core module have 

negligible amount of trace misalignment. Averaging a large number of traces could 

eliminate such problems. However, the experiments on the PDA suffer seriously from 

temporal misalignment of traces where averaging a large number of traces is no longer 

effective. The Java architecture, the trigger mechanism for the oscilloscope, and noise are 

the three main sources causing temporal misalignment in experiments. 
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First of all, there is a restriction that all the programs on the PDA must be written 

in Java, a high-level programming language. The final program is not as efficient as that 

written in a low-level programming language such as the assembly language used for the 

ARM Integrator/C7TDMI core module processor. Since a single low-level language 

instruction translates into a single machine-language instruction, whereas a high-level 

language instruction typically translates into a series of machine-language instructions. 

As a result, Java is much slower than the assembly language. 

 

Java consists of three components: the Java language, the Java Virtual Machine 

(JVM), and the Java API (Application Programming Interface). The Java Virtual 

Machine can be seen as an abstract computer. It is implemented in software on top of the 

hardware platform and operating system. Java programs are compiled for the JVM 

instead of the system. Programmer writes a Java program and the Java compiler translates 

that into codes that the JVM implements. These codes are called bytecodes. Bytecodes 

can be thought of as the machine language for the JVM. The JVM interprets a stream of 

bytecodes as a sequence of instructions. These instructions are then executed by the 

hardware and OS to generate the desired output [14].  Figure 6 shows the steps involved 

in executing a Java program.  
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Figure 6: Java Program Execution 

 

As illustrated in Figure 6, it takes several steps to interpret a Java program to 

execute and then generate the desired output. Due to the complex and unpredictable 

nature of the Java run-time environment, hardware and software interrupts may occur 

while the AES encryption test program is running on the PDA. Process switching may 

also occur while the encryption test program is running. Therefore, EM emanations due 

to these background operations of the PDA would occur at different times in each run of 

the Rijndael encryption causing delay when executing a Java program. As a result, a Java 

program may be started after an unknown period or after a very long delay causing traces 

to misalign in one acquisition. Also, a Java program may be randomly interrupted by 

another higher priority process, such as garbage collection, creating unwanted 

information in the EM or power traces captured. To remove the distortions created by 

garbage collection, all the experiments for this thesis force the PDA to perform garbage 

collection before all AES encryption to ensure that garbage collection is not needed 

during the computations. This is done by calling the System.gc() function supported by 

the java.lang package which the Java Virtual Machine recycles unused objects to free up 

memory for quick reuse before running the AES test program.  
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Secondly, the problem of misalignment of traces may also be caused by the 

trigger signal to the oscilloscope. The trigger signal is generated by turning the light 

emitting diode (LED) of the PDA ON and OFF. The LED is controlled by the Java API 

supported by the PDA vendor. The Java API is the set of classes included with the Java 

Development Environment. These classes are written using the Java language and run on 

the JVM. Once again due to the complex and unpredictable nature of the Java run-time 

environment, the Java API could also be delayed occasionally causing jitters in the 

trigger signal for each frame. Other trigger mechanisms such as: activating the vibration 

mode of the PDA and writing data to the USB port of the PDA, are also exploited. 

However, they give no improvement over the alignment of the traces. As a result, the 

LED of the PDA is chosen as the trigger signal to the oscilloscope. 

 

Thirdly, noise from the device under test, the testing environment and 

measurement equipments may also cause traces to misalign. For instance, due to the 

compact size of the PDA, EM signals captured from the processor might contain noise 

from other chips near by. On the other hand, the limited resolution of the oscilloscope 

also introduces quantization noise. One method to eliminate noise is to have as many 

traces as possible. However, the number of traces measured is limited by the scope 

memory. Also, since the AES program in Java runs at least hundred times slower than the 

AES assembly program, a longer frame would thus sacrifice the number of traces 

acquired due to the fixed scope memory size. For detailed explanations about how the 

scope memory affect the number of traces acquired, see Section 4.1.3. 

3.4.2.2 Effects of Trace Misalignment in Experiments 

As discussed in the previous section, temporal misalignment is a difficult experimental 

problem for DEMA. A high-level programming language and a temporally shifted trigger 

mechanism and noise could cause EM curves to misalign within a same acquisition set 

affecting DEMA to fail. 

 

Figure 7 below shows two aligned EM traces acquired from the ARM 

Integrator/C7TDMI core module. For further details of the device under test, see Section 
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4.1.1. The purpose of this figure is to show the importance of data alignment in a DEMA 

attack. To illustrate that they have good alignment, 2 traces performing the same 

operation are acquired. Figure 7a and Figure 7b are both a single EM trace captured while 

running the Rijndael encryption algorithm with the same key and the same plaintext. 

Figure 7c is obtained by subtracting Trace 1 in Figure 7a from Trace 2 in Figure 7b. 

Since these 2 traces are performing exactly the same operation, it is expected that the EM 

emanation of both traces are approximately the same. The subtraction of these 2 traces is 

expected to be zero. As shown in Figure 7c, the plot of their subtraction is close to zero at 

every point. Note that it will not be exactly zero due to minor variations in the traces 

caused by noise. Therefore, it is demonstrated that these 2 EM traces have good 

alignment. 
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Figure 7: Two Perfectly Aligned EM Traces (a & b), Trace 1 Minus Trace 2 (c) 
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Figure 8 below shows the acquired DEMA signals of 2976 EM traces measured 

from the ARM Integrator/C7TDMI core module. Since all the traces captured in this 

acquisition set are perfectly aligned, there is a clear spike in the differential signal at time 

0.8 us. The secret key is retrieved successfully using this set of EM traces. 
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Figure 8: Differential Time Signal of Perfectly Aligned EM Traces 

 

Now let us examine the negative effect of data misalignment. Figure 9 shows the 

same test as Figure 7 but executed on the PDA. For further details of the PDA, see 

Section 4.3.1. Although the shape of both traces is similar, one can notice that they are 

shifted in time. To better illustrate that they are not aligned, 2 traces performing the same 

operation are acquired. Figure 9a and Figure 9b are both a single EM trace captured while 

running the Rijndael encryption algorithm with the same key and the same plaintext. 

Figure 9c is obtained by subtracting Trace 1 in Figure 9a from Trace 2 in Figure 9b. 

Since these 2 traces are performing exactly the same operation, it is expected that the EM 

emanation of both traces are approximately the same. However, it is not the case in this 

particular test since these 2 traces are severely misaligned. As indicated in Figure 9c, the 

plot of their subtraction is not zero anymore.  
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Figure 9: Two Misaligned EM Traces (a & b), Trace 1 Minus Trace 2 (c) 

 

It is clear that if spikes are slightly out of alignment in time, they will cancel out 

rather than reinforced when averaging. It is observed that the amplitude of the subtraction 

in Figure 9c is much bigger than that in Figure 7c. Note the spurious spikes in the 

differential signal shown in Figure 10 below. It is not possible to determine the key 

information from the misaligned EM traces. Unlike Figure 8, no significant spike is found 

in the differential signal. As a matter of fact, the power or EM spikes analyzed in DPA or 

DEMA can be as small as 5 sample points wide, so a misalignment of 1 or 2 sample 

points can already cause significant loss of information when traces are averaged together. 
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As a result, DPA or DEMA could fail because of the negative effect of trace 

misalignment problem.  
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Figure 10: Differential Time Signal of Misaligned EM Traces 

3.4.3 Eliminating Trace Misalignment Using Power Spectral Density 

The previous sections have discussed about the causes and effects of temporal 

misalignment. In practice, temporal misalignment causes false peaks to be observed when 

performing DPA or DEMA. One possible solution to align the EM traces is to use a better 

trigger mechanism to the oscilloscope. However, with limited information on the PDA 

specifications, it is not possible to find another trigger mechanism that is better than the 

LED. Another solution to the problem is to use signal processing techniques after the 

acquisition of traces. 

 

Previous literature stated that temporal misalignment is a significant problem, but 

did not give any specific methods to align traces. The frequency-based side channel 

attack, DFA, presented in this thesis is intended to overcome the problem of performing 

first order differential analysis on real embedded systems where uncorrelated temporal 

misalignment of traces is a big concern. 

 

The essence of the Differential Frequency Analysis (DFA) is based on the time 

shifting property of Discrete Fourier Transform (DFT) for periodic signals [25]. This 

property states that a shift in time is equivalent to a linear phase shift in frequency. Since 
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the frequency content depends only on the shape of a signal, the frequency content 

remains unchanged in a time shift. Only the phase spectrum will be altered. 

  

Discrete Fourier Transform of Non-Shifted Periodic Signal 

)(][ jweXnx →  

Power Spectral Density of Non-Shifted Periodic Signal 

)()()(
2 jwjwjw eXeXeX −∗=  

Discrete Fourier Transform of Temporally Shifted Periodic Signal 

)(][ jwjwm eXemnx −→− , where m is the shift in time 

Power Spectral Density of Temporally Shifted Periodic Signal 

)()()()()(
2 jwjwjwjwmjwjwmjw eXeXeXeeXeeX −−− ∗=∗=  

 

As shown in the above formula, the PSD of a temporally shifted periodic signal is 

the same as the PSD of a non-shifted periodic signal. The power spectral density (PSD) 

[26] is a measure of how the power in a signal changes as a function of frequency. The 

power in this context is the square of Fast Fourier Transform’s (FFT) magnitude. The unit 

for PSD of an EM signal measured in this thesis is µV2/MHz, whereas the unit for PSD of 

a power signal is µA2/MHz. 

 

Although the EM or power data captured in this thesis are not periodic signals, it 

is still observed that the frequency contents of these discrete aperiodic signals are less 

vulnerable to the effects of time shifts. In fact, the power spectral density (PSD) of a 

temporally shifted EM trace is approximately the same as that of a non-shifted one. By 

analyzing the EM traces in the frequency domain, the effect of temporal misalignment in 

traces can be reduced.  

 

A MATLAB simulation program is used to demonstrate that the frequency 

content of a discrete aperiodic signal remains approximately the same with time shifts. 

This MATLAB simulation program takes a set of real EM data from the ARM evaluation 

board as the input. All traces in this set of EM data are perfectly aligned. First, the 
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average of the power spectral density of this perfectly aligned set of data is computed. 

Then, the simulation program inserts time shifts to the same set of EM data in a random 

fashion. The average of the power spectral density of the temporally misaligned set of 

data is also computed. At the end, the power spectral density of the perfectly aligned and 

the misaligned EM traces are compared with each other as shown in Figure 11 below. 
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Figure 11: PSD of Misaligned & Aligned EM Traces (a&b), Trace 1 Minus Trace 2 (c) 

 

In Figure 11, it is illustrated that the power spectral density for both perfectly 

aligned and misaligned EM signals are approximately the same. Figure 11a shows the 

average PSD of perfectly aligned EM Traces, whereas Figure 11b shows the average PSD 
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of misaligned EM Traces. Figure 11c is a plot of the difference of Figure 11a and Figure 

11b. As indicated in the plot, the magnitude of the difference of these power spectral 

densities is so small implying that their difference is negligible. Therefore, it is shown 

that the time shifts effect can be minimized in the frequency domain. 

 

According to Kocher’s hypothesis of DPA [1], there is a significant difference in 

the differential time signal of traces in subset 0 and subset 1 if the key guess is correct. In 

theory, spikes in the differential signal in time domain should also appear in frequency 

domain, since any changes in the time domain signals would induce changes in the 

frequency domain signals. As a result, when computing the differential signal in the 

frequency domain, a significant difference between the PSD of traces in subset 0 and 

subset 1 is still present. In other words, subset 0 and subset 1 should have different power 

spectral density distributions. Thus, the DFA algorithm can decide whether the groupings, 

or the guess for the key, are correct by distinguishing these PSD distributions. If the key 

guess is incorrect, the PSD distributions of subset 0 and subset 1 are identically 

distributed. Hence, the differential PSD signal in the frequency domain is flat. If the key 

guess is correct, there is a significant difference in the PSD distributions of subset 0 and 

subset 1. 

3.4.4 Runtime Analysis 

Regarding the runtime analysis of DFA, the preprocessing, the PSD calculation of each 

trace, in DFA runs in time θ(nmlogm). Recall from Section 3.3 that n is the total number 

of traces and m is the number of sample points in each trace. After this preprocessing, 

each of the 256 groupings can be tested using DFA in time θ(nm). The total runtime of 

DFA attacking a 8-bit S-Box is therefore θ(nmlogm + 256nm). As for the runtime of 

normal DEMA or DPA attack, there is no need of preprocessing. The total runtime is 

θ(256nm). Although DFA has a slightly higher computational overhead, it is efficient in 

extracting secret key under severe trace misalignment experimental conditions. 
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3.5 Other Previously Researched Side Channel Attacks 

To compare the effectiveness of DFA, this thesis compares the newly proposed technique 

to 3 previously researched attacks experimentally: the differential EM analysis (DEMA), 

the differential Spectrogram analysis (DSA), and Waddle’s second order attack (FFT 

2DPA). Before implementing these attacks in experiments, this section briefly introduces 

the methodology for each attack. 

3.5.1 Differential Time Analysis (DPA & DEMA) 

Since there are no conclusive results of DEMA on PDA’s featuring AES in previous 

research, the attack is performed and results are presented in this thesis. The methodology 

of DPA or DEMA is described below. 

 

keys 256 allfor  *2 outside spike maximum of vector maxPeak 
encryption AES ofkey   

signal) (threshold means ofdeviation  standard  _

  traceand set  of signal EM  
}1,0{ number,set   

}1,,0{ number,  trace 

STD_R
K

RSTD

ibT
bb

nii

b
i

=
=

=

=

∈=
−∈= K

 

maxPeakreturn :6
)_*2)(max()(maxPeak         :5

          :4

,_        :3
}{:2

2550 ,eachfor :1
or  

10

10

10

RSTDsabsK
TTs

)TSTD_DOM(TRSTD
races(T)partitionT,TT       

}, , {K K
DEMA(T)DPA

−←
−←

←

←

∈ L

 

 

Also note that this thesis provides an improvement on the differential time 

analysis. In the past, the correct key is retrieved if there is a peak in the differential time 

signal. However, peaks caused by noise can also be observed in a wrong key guess. As 

indicated in the above function, the differential time signal is compared to the two times 

of standard deviation threshold signal. The standard deviation threshold signal is 
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computed using the raw time data instead of PSD. This is a better comparison since this 

approach minimizes the impact of false peaks as discussed in Section 3.3. 

3.5.2 Differential Spectrogram Analysis (DSA) 

Spectrogram is a type of time-dependant frequency analysis. It consists of both time and 

frequency information [15]. The only difference between DFA and DSA is instead of 

computing the power spectral density for each EM trace in the pre-processing stage, the 

spectrogram of each traces is calculated. The methodology of calculating spectrogram is 

described below.  
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Then the set of spectrogram is partitioned into 2 groups based upon a key guess 

and the corresponding plaintext similar to the procedures in DFA. The value of the least 

significant bit (LSB) of the 8-bit S-Box output is computed in the first round of AES. The 

mean of each group of spectrogram is calculated. At the end, the differential spectrogram 

signal is computed and compared with the standard deviation threshold signal (STD_R) 

as described in Section 3.3. The standard deviation threshold signal (STD_R) is 

calculated in a same way as that for DFA, spectrogram is used instead of PSD. 
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3.5.3 Waddle’s Second Order Differential Attack (FFT-2DPA) 

Waddle’s FFT2DPA [13] attack is a second-order differential analysis that is proposed to 

defect masking countermeasure. Autocorrelation, or correlation of a trace with itself, is 

used to overcome masking. The only difference between DFA and FFT-2DPA is instead 

of computing the power spectral density for each EM trace in the pre-processing stage, 

the autocorrelation of each traces is calculated. The methodology of calculating 

autocorrelation is described below. 
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It is also important to note that the analysis presented by Waddle et al. is transformed 

back in the time domain to perform differential analysis, whereas the DFA is performed 

in the frequency domain. Waddle’s attack aims to defeat masking countermeasures, 

whereas DFA aims to overcome trace misalignment in first order differential analysis. In 

addition, DFA does not require computing the inverse FFT to transform the signal back to 

the time domain. Therefore, it requires less computational time. 
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4 Experiments 

This chapter describes the side channel attack experiments on an ARM 

Integrator/C7TDMI core module and a personal digital assistant (PDA) whose identity is 

not revealed to protect the vendor. The purpose of this chapter is to introduce the 

equipment for measuring EM emanations and power consumption. Sections 4.1 and 4.2 

present the experimental setup and results on the ARM Integrator/C7TDMI core module. 

Sections 4.3 and 4.4 present the experiment setup and results on the PDA. 

4.1 Experimental Setup for ARM Integrator/C7TDMI core module 

Figure 12 below shows the experimental setup for measuring EM emanation and power 

consumption from the ARM Integrator/C7TDMI core module. A digital oscilloscope, an 

EM probe connected to a pre-amplifier, a Multi-ICE debugger, a personal computer, and 

a inductive probe are used to acquire both EM and power traces from the ARM 

Tntegrator/C7TDMI core module. This section describes each of these instrument setups 

in details. 
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Figure 12: Power and EM Measurement Setup on ARM Integrator/C7TDMI. 
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4.1.1 ARM Integrator/CM7TDMI core module 

The ARM Integrator/CM7TDMI core module is ideally suited for designs that require 

low power, small size and high performance. Hence, it is chosen as the experimental 

device in this thesis because it is widely used in embedded devices such as pagers, 

wireless handsets, and personal digital assistants (PDA).  

 

This ARM evaluation board is used as a standalone development system 

connected to a Multi-ICE debugger. The Multi-ICE debugger is used to download image 

files, the byte code produced by the ARM compiler, to the core module. It is also used to 

debug the assembly code. There are seven main components in the ARM 

Integrator/CM7TDMI core module: two sets of diagnostic connectors and five test ports. 

The seven components consist of the ARM7TDMI microprocessor core [16], a core 

module FPGA, a volatile memory, a synchronous static RAM (SSRAM) controller, a 

clock generator, system bus connectors, and Multi-ICE connectors. Figure 13 illustrates 

the system architecture of the core module. 

  

Figure 13: System Architecture of the ARM Integrator/CM7TDMI Core Module. 

 

The ARM7TDMI microprocessor core is a separate chip on the evaluation board 

and is a 32-bit embedded Reduced Instruction Set Computer (RISC) processor. In 

addition, this processor core has both 32-bit unidirectional and bidirectional data bus, a 

32-bit address bus going out to the memory and a three-stage pipeline [16]. The clock of 

the processor core is set to 40MHz for all experimental results collected in section 4.2 

and section 4.4. In fact, EM emanations and power consumption both arise as a 
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consequence of current flows within the control, I/O, data processing or other parts of the 

ARM module. Of these numerous leakages, those induced by data processing operations 

carry the most compromising information. Therefore, the EM emanation from and the 

power consumption of the core processor are of particular interest in this thesis. For more 

information about the ARM evaluation board, see [16]. 

4.1.2 Trigger Setup 

To measure EM and power traces, a trigger signal is needed to notify the oscilloscope 

when to start recording a trace. In the experiments on the ARM core module, the trigger 

signal is sent in the form of a software interrupt from the core module to the oscilloscope. 

To send an interrupt, the interrupt controller is enabled by setting the IRQ enable set 

register (CM_IRQ_ENSET) to ‘1’. The output pin of software interrupt is the nIRQ 

signal. Then, the oscilloscope starts recording a frame when the nIRQ signal goes from 

high to low. A program is written in assembly language to generate the trigger signal to 

the oscilloscope. The software interrupt clear register (CM_SOFT_INTCLR) is first set to 

‘1’ to put nIRQ to high, 40 “NOP” instructions are followed. Then, the software interrupt 

set register (CM_SOFT_INTSET) is then to ‘0’ to put nIRQ to low, another 40 “NOP” 

instructions are executed to end the trigger. For more information on interrupts, refer to 

the ARM user’s guide [17]. 

4.1.3 Digital Phosphor Oscilloscope 

All the EM and power traces obtained in this thesis are captured with a Tektronix TDS 

7254 digital oscilloscope. This section describes the features of the oscilloscope used in 

the experiments. 

 

The oscilloscope can record up to 4 input signals simultaneously. For this 

particular experiment, Channel 1 is the input trigger signal from the ARM evaluation 

board. As mentioned in the trigger setup section above, the trigger signal nIRQ goes from 

high to low. Therefore, the trigger mode of the oscilloscope is set to the negative edge 

mode. The coupling mode is set to noise reject to minimize the noise in the trigger signal. 

Channel 2 is connected to an EM probe to measure the EM emanation from the ARM 
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core processor. Channel 3 is connected to an inductive probe to record the power 

consumption of the ARM core processor. 

 

For all traces measured for the ARM experiments, the HiRes acquisition mode is 

used. In HiRes mode, the instrument creates a record point by averaging all samples 

taken during an acquisition interval. It results in a higher resolution, less noise, and lower 

bandwidth waveform. Of all the modes available, the HiRes mode gives the best quality. 

 

To eliminate noise, averaging of at least several hundred of frames is required. 

The digital oscilloscope can acquire multiple frames in one recording in a special 

acquisition mode called FastFrame. In the FastFrame mode, multiple frames can be 

captured and each can be viewed and analyzed individually. The number of data points in 

each trace is specified by the record length and the number of traces is specified by the 

frame count. Each frame is captured when a valid trigger occurs.  

 

The user can adjust the time duration of each frame and the sampling rate using 

the Scale and Resolution button of the scope. However, there is a limitation on the scope 

memory (record length) with a maximum of 32 million sample points. Therefore, users 

have to make tradeoffs between resolution and time duration accordingly. The following 

equations show the inter-dependency of scope memory (record length), time duration, 

and resolution. 

 

Time Duration (s) = Sample Interval (s/sample) * Record Length (samples) 

Sample Interval (s/sample) = Resolution (s/sample) = 1/Sampling Rate (samples/s) 

 

As one can see from the above equations, increasing the time duration decreases 

the sampling rate, whereas increasing the sampling rate decreases the time duration. 

Resolution is sacrificed by having a long frame. For instance, in a frame of 2 µs with 

5000 sample points, the sampling period is (2 µs / 5000) = 0.4 ns. The sampling rate is 

thus (1 / 0.4 ns) = 2.5 Giga samples/s. And the frequency span is half of the sampling rate, 

(0.5 * 2.5 Giga samples/s) = 1.25 GHz. 
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For instance, an AES encryption algorithm is too long to fit into one frame. In 

most cases, the adversary is only interested in a small section of the Rijndael encryption 

algorithm, particularly the output of the S-Box in 1 round of AES. Therefore, it is 

preferable to pinpoint the attack point by zooming into the section of interest using the 

delay mode on the oscilloscope. The delay mode allows the oscilloscope to start 

displaying waveform by a user-specified period after the start of the trigger signal. For 

instance, if the specified delay period is 1 ms, the scope will display a waveform 1 ms 

after the start of the trigger signal. As a result, the attacker can pinpoint the exact section 

that contains the load instruction at the output of the S-Box. Hence, this allows the 

attacker to increase the frame resolution and capture only the desired section into a single 

frame. For other features of the oscilloscope, see [22]. 

 

For all the tests on the ARM evaluation board, 2976 frames are captured in each 

acquisition. The sampling rate is 2.5GS/s. The duration of each frame is 2 µs. There are 

5000 sample points in each frame. Table 1 below summarizes all the oscilloscope setup 

for the experiments on the ARM evaluation board. 

Table 1: Summary of Oscilloscope Setup for Experiments on ARM 

HiRes Acquisition mode 
FastFrame 

Trigger mode Negative edge 
Trigger coupling Noise reject 
Frame count 2976 
Record length 5000 
Delay 5.6 µs 
Duration of 1 frame 2 µs 
Frequency span 1.25 GHz 
Sampling rate 2.5 Giga samples/s 
Channel 1 Trigger signal 
Channel 2 EM signal 
Channel 3 Current signal 
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4.1.4 EM Probe 

A near field EM probe by Electro-Metrics Inc. (Model EM-6992) is used to measure the 

EM emanation from the ARM processor core. The probe is connected to the scope using 

a 50-ohm coaxial cable. A preamplifier is inserted between the EM probe and the 

oscilloscope to improve the overall measurement sensitivity. The typical gain of the 

preamplifier is approximately 22 dB. The probe can test radiated emissions over a broad 

range of frequencies from below 100 kHz to 1 GHz. See [18] for more details about the 

pre-amplifier. 

 

Probe choice is determined by the type of signal under observation, signal 

strength, and the physical size of the area to be investigated. It is important to note that 

the EM field can be decomposed into 2 primary components: an electric field and a 

magnetic field. The electric field fails for low frequency but carries different information 

than the magnetic one [19]. By trial and error, it is observed that the magnetic probe with 

a shape of a 1-cm loop gives the best EM signal quality. This probe has low sensitivity 

which helps in isolating an emission source more precisely. The loop is wound within a 

balanced Faraday shield that reduces its response to electric fields to a negligible factor. 

Therefore, it shows that the EM radiation from the ARM processor core has a stronger 

magnetic field component. The primary pickup direction is broadside to the loop, with 

sharp notches in the pickup pattern in the plane of the loop. Even small changes in the 

distance from the probe to the item under test can yield large variations in amplitude. 

This magnetic probe is put directly on top of the ARM processor core to obtain the best 

EM signal quality. 

4.1.5 Inductive Probe 

The power consumption of the ARM processor core is measured in a form of current in 

this thesis. The amount of voltage drawn on the ARM processor core is 3.3V, the current 

consumption can be easily converted to power consumption by multiplying the current 

with the supply voltage. On the Integrator/CM7TDMI core module, there are two test 

points (TP4 and TP5) located on the two ends of a zero-ohm resistor (R16). This zero-

ohm resistor is a wire indeed. According to [17], these two test points can measure the 
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current drawn by the ARM7TDMI processor core. The zero-ohm resistor is the power 

line that connects the processor core to its power supply. Therefore, the core will draw 

different amount of power depending on the instructions executed. To measure this 

current, an inductive probe, Tektronix TCP202 DC/AC Inductive Current Probe [23], is 

connected to TP4 and TP5 and the zero-ohm resister is soldered off. The inductive probe 

is connected to the power line, and thus, the current change in the processor core will 

induce a change in the inductor. The inductive probe is connected to a digital phosphor 

oscilloscope where the change in current is recorded. 

4.1.6 Experimental Methodology 

Step 1: Loading the AES Encryption Program to the ARM Evaluation Board 

The symmetric key algorithm undergoing the side channel attack is the AES encryption 

with a master key length of 128 bits. The program under test is written in assembly 

language using the optimized Rijndael implementation recommended in [20]. The test 

program is written such that the AES encryption is run in a loop for 2796 times with 

random plaintext inputs. The input plaintexts are kept in record for statistical analysis 

with MATLAB after the data capture step. The plaintexts are specially prepared in a way 

such that only the data at the output of the 1st S-Box would be different in the first round 

of Rijndael. The operands at the output of the rest of the 15 S-Boxes in the first round are 

kept constant in order to minimize the noise created by these S-Boxes. To create such 

effect, only the first 8 most significant bits of the plaintexts are random, the rest of all 

other bits are fixed. 

 

The AES encryption assembly program is then converted into an image file using 

the ARM compiler. Next, turn on the ARM evaluation board. Launch the Multi-Ice server. 

First, load the image file using the AXD Debugger to set the clock speed of the ARM 

processor core to 40 MHz. Then load the image file containing the AES encryption test 

program. 

 



Chapter 4 – Experiments 

43 

Step 2: Capturing EM or Power Traces 

Before running the encryption algorithm, place the EM probe on top of the core processor. 

The methodology for capturing power traces is basically the same as that for capturing 

EM traces. The only difference is that the inductive probe is used instead of the EM probe. 

The inductive probe is already connected to the test points on the board. Hence, no 

additional setup is required for measuring power data. Next, setup the oscilloscope 

according to Table 1 in Section 4.1.3. Then, execute the AES encryption program. After 

capturing the waveforms on the oscilloscope, generate a data file containing the EM or 

power data of the ARM core processor. Such data file is then exported to MATLAB for 

statistical analysis.  

 

Step 3: Statistical Analysis with MATLAB 

After step 2, statistical analysis is done on the raw EM or power data with a MATLAB 

program. The analysis program is written according to the DFA attack methodology 

described in Section 3.3. The MATLAB program produces a correct key guess after 

running through all possible keys. See Appendix 2 for the analysis program in MATLAB. 

4.2 Experimental Results for Attacks on ARM Evaluation Board 

This section presents the experimental results from the ARM evaluation board. Both EM 

emanation and power consumption are measured from the ARM evaluation board. First 

of all, results of EM analysis are illustrated, and then followed by results of power 

analysis. The purpose of this section is to evaluate the effectiveness of the proposed 

Differential Frequency Analysis to extract the secret key of the Rijndael encryption 

algorithm. In addition, an attack on the desynchronization countermeasure for AES 

against DEMA using the new frequency-based attack is performed. To verify that the 

results presented are consistent, all the experiments are repeated for 3 times. 
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4.2.1 EM Analysis on AES 

In this experiment, EM traces are captured from the ARM core processor. The AES 128-

bit encryption algorithm without countermeasure is loaded to the ARM evaluation board. 

The correct key of the S-Box being attacked is 0xD2. In order to recover the master key 

of the encryption algorithm, the differential EM analysis (DEMA) is first performed. 

Next, the differential EM frequency analysis (DEMFA) is performed on the same set of 

data. 

4.2.1.1 Differential Electromagnetic Analysis (DEMA) 

Before investigating the effectiveness of Differential Frequency Analysis for EM analysis, 

it is necessary to verify if the set of EM traces measured from the ARM evaluation board 

leaks any information about the master key of the AES encryption algorithm. Therefore, 

the first analysis done on the EM traces is the previously researched DEMA attack.  

 

In the DEMA attack, EM traces are partitioned into 2 groups using the partition 

function D(P, b, K) according to the corresponding plaintext and key guess. The value of 

the least significant bit (LSB) of the 8-bit S-Box output is computed in the first round of 

AES. Refer to Figure 4 for the illustration of trace partitioning. Figure 14 below shows 

the differential time signal for the correct partition with the key value equals to 0xD2. 

The differential signal is computed by subtracting the average of traces in group 0 from 

the average of traces in group 1. Figure 14 shows a large spike occurring at regions 

around 0.8 µs suggesting that the partition function D(P, b, K) is correlated to the data 

being processed. The spike at regions around 0.8 µs means that the output of the S-Box is 

computed in this particular time. On the other hand, the differential time signal in Figure 

15 is merely composed of noise for an incorrect key guess. There is no significant spike 

observed in this differential signal. 
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Figure 14: DEMA on ARM (correct key=0xD2) Figure 15: DEMA on ARM for (wrong 

key=0xA5) 

 

Figure 16 below shows the all keys search of 256 possible key values. The 

analysis computes and compares the absolute value of the differential time signal and 

record the maximum peak outside 2*STD_R for each 256 possible key guesses. Refer to 

Section 3.5.1 for details of the DEMA methodology. As demonstrated in Figure 16, the 

key value 0xD2 has the biggest spike among all keys. Hence, the correct key is 

successfully extracted from the DEMA attack on the ARM evaluation board. 
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Figure 16: All Keys Search of DEMA on ARM 

The above DEMA experimental results justify that the set of EM data measured 

leak compromising information about the master key of the AES encryption algorithm. 

Hence, Differential Frequency Analysis (DFA) is performed on the same set of EM data 
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in the next section to determine whether this new attack can extract the secret key as in 

DEMA.  

4.2.1.2 Differential EM Frequency Analysis (DEMFA) 

Knowing that DEMA is possible on the ARM evaluation board, the purpose of this test is 

to determine whether DEMFA could successfully extract the secret key of the Rijndael 

encryption algorithm. In this analysis, the EM traces are partitioned into 2 groups 

according to the corresponding plaintext and key guess similar to the DEMA attack. The 

value of the least significant bit (LSB) of the 8-bit S-Box output is computed in the first 

round of AES. Refer to Figure 4 for the illustration of trace partitioning. In this attack, 

one extra step is taken in this analysis, the raw time domain EM signal is transformed to 

the frequency domain. The power spectral density of each EM trace is computed in this 

pre-processing stage. Refer to Section 3.3 for details of the DEMFA methodology. 

 

Figure 17 below shows the differential PSD signal for the correct partition with 

the key value equals to 0xD2. Note that this is a differential frequency signal. Unlike 

DEMA, the differential frequency signal is computed by subtracting the averaged power 

spectral density for traces in group 0 from the averaged power spectral density for traces 

in group 1. The y-axis now represents the PSD magnitude and the x-axis represents the 

frequency. The differential frequency signal in Figure 17 has notably higher amount of 

area outside of the ±2*STD_R region. Recall from Section 3.3 that the ±2*STD_R region 

serves as a benchmark to determine whether a spike in the differential frequency signal is 

significant. The differential frequency signal in Figure 18 has drastically less spikes 

outside the ±2*STD_R region for an incorrect key guess. 
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Figure 17: DEMFA on ARM (correct 
key=0xD2) 

Figure 18: DEMFA on ARM (wrong 
key=0xA5) 

 

Figure 19 shows the all keys search of 256 possible key values. The analysis 

computes and compares the total area of spikes that are beyond the ±2*STD_R region for 

all 256 possible key values of the AES S-Box being attacked. As demonstrated in Figure 

19, the key value 0xD2 has the highest amount of total area of PSD spikes beyond the 2 

times standard deviation threshold region among all keys. Hence, the correct key is 

successfully recovered from the DEMFA. 
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Figure 19: All Keys Search of DEMFA on ARM 

 

The experimental results from above justify that the differential EM frequency 

analysis is at least as effective as the previously researched DEMA attack. 
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4.2.2 EM Analysis on a Single Load Instruction 

To further investigate the behavior of the Differential Frequency Analysis (DFA), this 

section describes an experiment that measures EM radiation from the ARM evaluation 

board. Instead of running the Rijndael encryption algorithm, the test program executes a 

“Load” instruction of AES S-Box sandwiched between several “NOP” instructions. The 

purpose of this test is to verify that only the “Load” instruction is responsible of the 

difference in the differential PSD signal in the DEMFA attack. 

 

In this test, one has to locate where the S-Box “Load” instruction occurs at first. 

Using the same techniques as DEMA, it is observed that the “Load” instruction occurs 

between sample points 2000 to 2300. Knowing exactly where the “Load” instruction is 

located in time, 2 verification tests has to be done. One test involves keeping the EM 

signals containing only “NOP” instructions but filtering out all signals of the S-Box 

“Load” instruction. The purpose of this attack is to determine whether the “NOP” 

instructions have any effects on the DEMFA results. Theoretically, these “NOP” 

instructions would not compromise any information of the secret key since they do not 

contain any information of the data manipulated in the algorithm. Figure 20 shows the all 

keys search results. The correct key cannot be determined since the S-Box “Load” 

instruction is not present in the EM traces. 
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Figure 20: All Keys Search of DEMFA on ARM excluding the “Load” Instruction 
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The other test is the exact opposite of the previous one. It involves keeping the 

EM signals containing only the S-Box “Load” instruction and filtering out the rest of the 

“NOP” instructions. The DEMFA attack is performed on this set of signal with only the 

“Load” instruction EM data. Figure 21 shows the all keys search results by comparing the 

differential PSD signal for each key guess. It is clearly indicated that the attack is able to 

extract the correct master key from the EM data containing only the AES S-Box “Load” 

signals. 
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Figure 21: All Keys Search of DEMFA on ARM for the “Load” Instruction 

 

These two tests, DEMFA on S-Box “Load” instruction and DEMFA on “NOP” 

instructions, demonstrate that only the S-Box “Load” is responsible for the significant 

difference in the averaged power spectral density distribution of group 0 and group 1 for 

a correct key guess. Therefore, it is confirmed experimentally that spikes appeared in the 

differential signal in time domain also appear in frequency domain, since any changes in 

the time domain signals would induce changes in the frequency domain signals. As a 

result, when computing the differential signal in the frequency domain, a significant 

difference between the PSD traces in subset 0 and subset 1 is still present. 
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4.2.3 EM Analysis on AES with Countermeasure 

Having shown that the AES implementation is completely broken by both DEMA and the 

new DEMFA attack, this test perform the same EM attacks on the Rijndael encryption 

with a countermeasure implemented. Some countermeasures for DEMA consist in 

introducing desynchronization in the execution of the process so that the curves are not 

aligned anymore within a same acquisition set. For example, there exist various 

techniques such as fake cycle insertions, unstable clocking or random delays [21]. The 

purpose of this experiment is to investigate whether the desynchronization 

countermeasure can protect the symmetric key algorithm against DEMA and DEMFA 

attacks.  

 

In this test, the original AES encryption algorithm is modified to randomly insert 

“NOP” instructions in order to create random delay in each EM frame. The aim of this 

countermeasure is to create the effect of temporal misalignment in EM traces. 

4.2.3.1 Differential Electromagnetic Analysis (DEMA) 

Figure 22 shows the all keys search of 256 possible key values of the DEMA attack. The 

analysis computes and compares the absolute value of the differential time signal and 

record the maximum peak outside 2*STD_R for all 256 possible key values of the S-Box. 

As demonstrated in Figure 22, the key value 0xD2 does not have the biggest spike among 

all keys. Hence, the correct key cannot be extracted from this attack. This test shows that 

the desynchronization countermeasure is effective against DEMA. 
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Figure 22: All Keys Search of DEMA on ARM for AES with Countermeasure 

4.2.3.2 Differential EM Frequency Analysis (DEMFA) 

Figure 23 shows the all keys search of 256 possible key values of the frequency attack. 

This attack computes and compares the total area of spikes that are beyond the 

±2*STD_R region for all 256 possible key values of the AES S-Box being attacked. As 

illustrated in Figure 23, the key value 0xD2 has the highest amount of total area of PSD 

spikes beyond the 2 times standard deviation threshold region among all keys. The 

correct key is successfully extracted. Hence, the proposed DEMFA attack is shown to be 

able to defect the desynchronization countermeasure that randomly inserts time shifts. 
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Figure 23: All Keys Search of DEMFA on ARM for AES with Countermeasure 
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4.2.4 Power Analysis on AES 

This section presents the experimental results of power analysis on the ARM evaluation 

board. The purpose of the experiments is to verify that the results from the EM emanation 

agree with the power consumption of the ARM core processor. 

 

Before investigating the effectiveness of Differential Frequency Analysis for 

power traces, it is once again necessary to verify if the set of power traces measured from 

the ARM evaluation board leaks any information about the master key of the AES 

encryption algorithm. Therefore, the first analysis done on the power traces is the 

previously researched DPA attack.  

 

In this experiment, power traces are captured from the ARM core processor. The 

AES 128-bit encryption algorithm without countermeasure is loaded to the ARM 

evaluation board. The correct key of the S-Box being attacked is 0xD2. In order to 

recover the master key of the encryption algorithm, the differential power analysis (DPA) 

is first performed. Next, the differential power frequency analysis (DPFA) is performed 

on the same set of data. 

4.2.4.1 Differential Power Analysis (DPA) 

In this DPA attack, power traces are partitioned into 2 groups according to the 

corresponding plaintext and key guess. The value of the least significant bit (LSB) of the 

8-bit S-Box output is computed in the first round of AES. Refer to Figure 4 for the 

illustration of trace partitioning. Figure 24 below shows the differential time signal for 

the correct partition with the key value equals to 0xD2. The differential signal is 

computed by subtracting the average of traces in group 0 from the average of traces in 

group 1. Figure 24 shows a large spike occurring at regions around 0.8 µs suggesting that 

the partition function D(P, b, K) is correlated to the data being processed. The spike at 

regions around 0.8 µs means that the output of the S-Box is computed in this particular 

time. On the other hand, the differential time signal in Figure 25 is merely composed of 

noise for an incorrect key guess. There is no significant spike observed in this differential 

time signal. 
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Figure 24: DPA on ARM (correct key=0xD2) Figure 25: DPA on ARM (wrong key=0xA5) 

 

The DPA results confirm that the attack point, the output of AES S-Box occurs at 

around time 0.8 µs. The results agree with the DEMA results presented earlier. Figure 26 

shows the all keys search of 256 possible values. The analysis computes and compares 

the absolute value of the differential time signal and record the maximum peak outside 

2*STD_R for each 256 possible key values of the S-Box. As demonstrated from Figure 

26, the key value 0xD2 has the biggest spike among all keys. Hence, the correct key is 

successfully recovered using the DPA attack. 
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Figure 26: All Keys Search of DPA on ARM 

 

The above DPA results justify that the set of power data measured leak 

compromising information about the master key of the AES encryption algorithm. Hence, 
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Differential Frequency Analysis is performed on the same set of power data in the next 

section determine whether this new attack can extract the secret key as in DPA.  

4.2.4.2 Differential Power Frequency Analysis (DPFA) 

Knowing that DPA is possible on the ARM evaluation board, the purpose of this test is to 

determine whether DFA could successful extract the master key of Rijndael encryption 

algorithm using the same set of power traces. In this analysis, the power traces are 

partitioned into 2 groups according to the corresponding plaintext and key guess similar 

to the DPA attack. The value of the least significant bit (LSB) of the 8-bit S-Box output is 

computed in the first round of AES. Refer to Figure 4 for the illustration of trace 

partitioning. In this attack, one extra step is taken in this analysis, the raw time domain 

power signal is transformed to the frequency domain. The power spectral density of each 

power trace is computed in this step. Refer to Section 3.3 for details of the DPFA 

methodology. 

 

Figure 27 below shows the differential signal for the correct partition with the key 

value equals to 0xD2. Note that this is a differential frequency signal. Unlike DPA, the 

differential frequency signal is computed by subtracting the averaged power spectral 

density for traces in group 0 from the averaged power spectral density for traces in group 

1. The differential frequency signal in Figure 27 has notably higher amount of area 

outside of the ±2*STD_R region. Recall from Section 3.3 that the ±2*STD_R region 

serves as a benchmark to determine whether a spike in the differential frequency signal is 

significant. The differential signal in Figure 28 has drastically less spikes outside the 

±2*STD_R region for an incorrect key guess. 
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Figure 27: DPFA on ARM (correct key=0xD2) Figure 28: DPFA on ARM (wrong 
key=0xA5) 

 

Figure 29 shows the all keys search of 256 possible values. The analysis computes 

and compares the total area of spikes that are beyond the ±2*STD_R region for all 256 

possible key values of the Rijndael S-Box being attacked. As illustrated in Figure 29, the 

key value 0xD2 has the highest amount of total area of PSD spikes beyond the 2 times 

standard deviation threshold region among all keys. Hence, the correct key is successfully 

extracted from the DPFA attack. 
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Figure 29: All Keys Search of DPFA on ARM 

 

The experimental results from above justify that the DPFA is at least as effective 

as the previously researched DPA attack. 
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4.2.5 Power Analysis on AES with Countermeasure 

Having shown that the AES implementation is completely broken by both DPA and the 

new DPFA attack, this test perform the same power attacks on the Rijndael encryption 

with a countermeasure implemented. Some countermeasures for DPA consist in inserting 

random delays. The purpose of this experiment is to investigate whether the 

desynchronization countermeasure can protect the symmetric key algorithm against DPA 

and DPFA attacks. 

 

In this test, the original AES encryption algorithm is modified to randomly insert 

“NOP” instructions to create random delay in each power frame. The aim of this 

countermeasure is to create the effect of temporal misalignment in power traces. 

4.2.5.1 Differential Power Analysis (DPA) 

Figure 30 shows the all keys search of 256 possible key values of the DPA attack. The 

analysis computes and compares the absolute value of the differential time signal and 

record the maximum peak outside 2*STD_R for all 256 possible key values of the S-Box. 

As demonstrated in Figure 30, the key value 0xD2 does not have the biggest spike among 

all keys. Hence, the correct key cannot be extracted from this attack. The 

desynchronization countermeasure is effective against DPA. 
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Figure 30: All Keys Search of DPA on ARM for AES with Countermeasure 
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4.2.5.2 Differential Power Frequency Analysis (DPFA) 

Figure 31 shows the all keys search of 256 possible key values of the frequency attack. 

The analysis computes and compares the total area of spikes that are beyond the 

±2*STD_R region for all 256 possible key values of the AES S-Box being attacked. As 

illustrated from Figure 31, the key value 0xD2 has the highest amount of total area of 

PSD spikes beyond the 2 times standard deviation threshold region among all keys. The 

correct key is successfully extracted. Hence, the proposed DPFA attack is shown to be 

able to defect the desynchronization countermeasure that randomly inserts time shifts. 
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Figure 31: All Keys Search of DPFA on ARM for AES with Countermeasure 

 

In summary, the experimental results in this section show that both the EM 

emanation and power consumption of the ARM evaluation board leak secret information 

about the symmetric key algorithm. The master key is also successfully extracted even 

when countermeasure is implemented using the new side channel attack, the Differential 

Frequency Analysis (DFA). It is confirmed experimentally that DFA is more effective 

than previously researched DEMA and DPA. 
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4.3 Experimental Setup for PDA 

Figure 32 below shows the experimental setup for measuring EM emanation from a PDA. 

A digital oscilloscope and an EM probe connected to a pre-amplifier are used to acquire 

EM traces from the PDA. This section describes the instrumental setup in details. 
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Figure 32: EM Measurement Setup on PDA 

4.3.1 PDA 

To protect the vendor identity, the PDA model is not revealed in this thesis. The shielding 

on the back of this wireless Java-based PDA is removed to expose the processor such that 

the EM probe can be placed directly on top. All applications for this PDA must be written 

in Java. The PDA has a much more complex architecture than the ARM 

Integrator/CM7TDMI core module. Its processor operates at a higher clock frequency. It 

also consists of other components such as LCD screen, radio antenna and receiver, non-

volatile memory, etc. Only the EM side channel is available from this PDA.  

4.3.2 Trigger Setup 

To measure EM traces, a trigger signal is needed to notify the oscilloscope when to start 

recording a trace. In the experiments on the PDA, the trigger signal is generated by 

switching the light emitting diode (LED) of the PDA ON and OFF. The LED is turned 

ON and OFF using the Java API supported by the PDA vendor. To start the trigger signal, 

the LED is first turned ON and then turned OFF. The voltage difference between the ON 

and OFF state of the LED is used to trigger the oscilloscope. 
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4.3.3 Digital Phosphor Oscilloscope 

The setup of the oscilloscope for PDA experiments is basically similar to the setup 

described in Section 4.3.3. Note that for all the traces measured from the PDA, the peak 

detect mode is used instead. Due to the memory restriction of the scope as discussed in 

Section 4.1.3, the frequency span of the EM data measured from the PDA is low 

comparing to that from the ARM evaluation board. Of all the modes available, the peak 

detect mode gives the best quality for EM signals captured at low frequency. In this 

acquisition mode, the scope alternates between saving the lowest sample in one 

acquisition interval and the highest sample in the next acquisition interval. Also note that 

the trigger signal goes from low to high, a positive edge trigger mode is used on the 

oscilloscope. 

 

For all the tests on the PDA, 1030 frames are captured in each acquisition. The 

sampling rate is 25MS/s. The duration of one frame is 1 ms, There are 25000 sample 

points in each frame. Table 2 below summarizes the oscilloscope setup for experiments 

on PDA. 

 

Table 2: Summary of Oscilloscope Setup for Experiments on PDA 

Peak detect Acquisition mode 
FastFrame 

Trigger mode Positive edge 
Trigger coupling Noise reject 
Frame count 1303 
Record length 25000 
Delay 0 ms 
Duration of 1 frame 1 ms 
Frequency span 12.5 MHz 
Sampling rate 25 Mega samples/s 
Channel 1 Trigger signal 
Channel 2 EM signal 
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4.3.4 EM Probe 

The EM probe used is the same as the one discussed in section 4.1.4. The EM probe is 

placed directly on top of the processor of the PDA. 

4.3.5 Experimental Methodology 

Step 1:  Loading the AES Encryption Program to the PDA 

The symmetric key algorithm undergoing the side channel attack is the AES encryption 

with a master key length of 128 bits. The program under test is written in Java using the 

optimized Rijndael implementation recommended in [20]. The test program is written 

such that the AES encryption is run in a loop for 1303 times with random plaintext inputs. 

See Appendix 3 for the Java code of the AES implementation. The input plaintexts are 

kept in record for statistical analysis with MATLAB after the data capture step. The 

plaintexts are specially prepared in a way such that only the data at the output of the 1st S-

Box would be different in the first round of Rijndael. The operands at the output of the 

rest of the 15 S-Boxes in the first round are kept constant in order to minimize the noise 

created by these S-Boxes. To create such effect, only the first 8 most significant bits of 

the plaintexts are random, the rest of all other bits are fixed. To capture EM signals from 

a PDA, load the AES encryption program to the PDA. 

 

Step 2: Capturing EM Traces 

Next, connect LED as the trigger signal to the oscilloscope. Before running the 

encryption algorithm, place the EM probe on top of the processor of PDA. It is observed 

that the location of the EM probe will affect the quality of the signal captured. By trial 

and error, it is observed that by placing the probe directly on top of the processor chip at a 

zero-degree angle gives the best EM signal quality. Next, setup the oscilloscope 

according to Table 2 in Section 4.3.3 and execute the AES encryption program. After 

capturing the waveform on the oscilloscope, generate a data file containing the EM 

emanation of the PDA processor. Such data file is then exported to MATLAB for 

statistical analysis.  
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Step 3: Statistical Analysis with MATLAB 

After step 2, statistical analysis is done on the raw EM data with a MATLAB program. 

The analysis program is written according to the DFA attack methodology described in 

Section 3.3. The MATLAB program produces a correct key guess after running through 

all possible keys. See Appendix 2 for the analysis program in MATLAB. 

4.4 Experimental Results for Attacks on PDA 

This section presents the experimental results from the PDA. Since it is not possible to 

measure power consumption of the PDA, only EM emanations are measured from the 

PDA. This section investigates the threat of EM analysis on PDA’s. The purpose of this 

section is to evaluate the effectiveness of the proposed Differential Frequency Analysis to 

extract the secret key of the Rijndael encryption algorithm when uncorrelated temporal 

misalignment of traces is severe. In order to make sure that the results are consistent, all 

the experiments are repeated for 3 times. 

4.4.1 EM Analysis on AES 

In this experiment, EM traces are captured from the PDA running the Rijndael encryption 

without any countermeasures implemented. First of all, the simple EM analysis (SEMA) 

is used to demonstrate that the sequence of instructions executed on the PDA can be 

revealed from a single EM trace. In order to extract the master key of the encryption 

algorithm, the differential EM analysis (DEMA) is first performed. Next, the differential 

EM frequency analysis (DEMFA) is performed on the same set of data. 

4.4.1.1 Simple Electromagnetic Analysis (SEMA) 

According to Kocher, simple power analysis can yield information about a device’s 

operation as well as key material. Similarly for simple electromagnetic analysis (SEMA), 

experimental results show that the sequence of instructions executed on the device under 

test can be also revealed. Therefore, it can be used to break cryptographic 

implementations in which the execution path depends on the data being processed. Figure 

33 below shows the scope capture of an AES encryption with 192-bit key length of a 

single EM frame. Twelve rounds of AES transformations are clearly shown in the figure. 

In fact, an adversary can determine the key length from simply inspecting the number of 
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rounds being executed during an AES encryption. In other words, for AES with 256 bit 

key length, one would expect to see 14 rounds from the EM capture. Hence, SEMA can 

reveal the number of rounds in the AES encryption to determine the key length. 

 

 

Figure 33: SEMA on PDA for AES 192-bit 

4.4.1.2 Differential Electromagnetic Analysis (DEMA) 

The AES 128-bit encryption algorithm without countermeasure is loaded to the PDA. The 

correct key of the S-Box is 0x5C. Before investigating the effectiveness of Differential 

Frequency Analysis for EM analysis, it is necessary to verify if the set of EM traces 

measured from the PDA leaks any information about the master key of the AES 

encryption algorithm. Therefore, the first analysis done on the EM traces is the previously 

researched DEMA attack. 

 

In this DEMA attack, the EM traces are partitioned into 2 groups according to the 

corresponding plaintext and key guess. The value of the least significant bit (LSB) of the 

8-bit S-Box output is computed in the first round of AES. Refer to Figure 4 for the 

illustration of trace partitioning. Figure 34 below shows the differential signal for the 

correct partition with the key value equals to 0x5C. Figure 34 below shows the 

differential signal for the wrong partition with the key value equals to 0xE6. The 

differential time signal is computed by subtracting the average of traces in group 0 from 
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the average of traces in group 1. As shown in Figure 34 and Figure 35, no significant 

spike is observed from the differential time signal for both key guesses. Misaligned traces 

cause large spurious peaks in a differential trace. When spikes are slightly out of 

alignment in time, they will cancel out rather than reinforced when averaging. 
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Figure 34: DEMA on PDA (correct key=0x5C) Figure 35: DEMA on PDA (wrong 
key=0xE6) 

 

Figure 36 shows the all keys search for 256 possible key values. The analysis 

computes and compares the absolute value of the differential time signal and record the 

maximum peak outside 2*STD_R for all 256 possible key values of the S-Box. Refer to 

Section 3.5.1 for details of the DEMA methodology. As illustrated in Figure 36, the key 

value 0x5C does not have the biggest spike among all keys. Hence, the correct key is not 

recovered. DEMA is not effective when misalignment of traces is severe during 

experiments.  
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Figure 36: All Keys Search of DEMA on PDA 

Since the previously researched DEMA is unsuccessful in extracting the correct 

key of the AES encryption, the next section investigates the effectiveness of analysis in 

frequency domain under severe experimental conditions. 

4.4.1.3 Differential EM Frequency Analysis (DEMFA) 

Knowing that DEMA is incapable of determining the Rijndael encryption key using the 

EM traces from the PDA, the purpose of this analysis is to determine whether the new 

DEMFA attack could successfully recover the master key. In this analysis, the EM traces 

are partitioned into 2 groups according to the corresponding plaintext and key guess 

similar to the DEMA attack. The value of the least significant bit (LSB) of the 8-bit S-

Box output is computed in the first round of AES. Refer to Figure 4 for the illustration of 

trace partitioning. In this attack, one extra step is taken in this analysis, the raw time 

domain EM signal is transformed to the frequency domain. The power spectral density of 

each EM trace is computed in this step. Refer to Section 3.3 for details of the DEMFA 

methodology. 

 

Figure 37 below shows the differential PSD signal for the correct partition with 

the key value equals to 0x5C. Note that this is a differential frequency signal. Unlike 

DEMA, the differential frequency signal is computed by subtracting the averaged power 

spectral density for traces in group 0 from the averaged power spectral density for traces 
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in group 1. The y-axis represents the PSD magnitude and the x-axis represents the 

frequency. The differential signal in Figure 37 has significantly higher amount of area 

outside the ±2*STD_R region. Please refer to section 3.2 for calculation of the STD_R 

region. The differential signal in Figure 38, on the other hand, has significantly less 

spikes outside the standard deviation region for an incorrect key guess of 0xE6. 
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Figure 37: DEMFA on PDA (correct key=0x5C) Figure 38: DEMFA on PDA (wrong 
key=0xE6) 

 

Figure 39 shows the all keys search for 256 possible key values. The analysis 

computes and compares the total area of PSD spikes that are beyond the ±2*STD_R 

region for all 256 possible key values. The AES S-Box being attacked is used in the 8 

most significant bit (MSB) of the 128-bit key. As shown in Figure 39, the key value 0x5C 

has highest amount of total area of PSD spikes beyond the 2 times standard deviation 

threshold region among all keys. Hence, the correct key is successfully recovered from 

the DEMFA. 
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Figure 39: All Keys Search of DEMFA on PDA 

The experimental results from above justify that the differential EM frequency 

analysis is more effective than the DEMA attack when the problem of misalignment of 

traces and noise is severe. 

 

Figure 40 illustrates the results of attacking a different S-Box in the AES 

algorithm. The AES S-Box being attacked is used in the 8 least significant bit (LSB) of 

the 128-bit key. The correct key for this last S-Box is 0x3C. The correct key is 

successfully determined by the DEMFA. It is shown that the DEMFA attack can extract 

the complete 128-bit secret key by attacking all 16 S-Boxes one at a time. 
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Figure 40: All Keys Search of DEMFA on PDA (Attacking Last S-Box) 
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4.4.1.4 Differential EM Spectrogram Analysis (DEMSA) 

This thesis performs the differential EM spectrogram analysis (DEMSA) proposed by 

Gebotys et al. in [15] to PDA’s running the Rijndael encryption algorithm. The purpose 

of this test is to investigate whether the spectrogram analysis is effective in extracting the 

AES encryption secret key. Recall from Section 3.5.2 that Spectrogram is a time-

dependent frequency analysis. It consists of both time and frequency information, and 

therefore, has the advantage to pinpoint the time where there is a significant correlation 

between EM emanation and data values being manipulated. 

 

Figure 41 below shows the differential spectrogram signal for the correct partition 

with the key value equals to 0x5C. Unlike DEMA and DEMFA, the differential 

spectrogram signal is computed by subtracting the averaged spectrogram for traces in 

group 0 from the averaged spectrogram for traces in group 1. The y-axis now represents 

the spectrogram magnitude and the x-axis represents the time. The window size of 

creating the spectrogram is 0.1 ms as illustrated in both Figure 41 and Figure 42. In 

between the 0.1 ms time intervals is the plot of the differential signal over a range of 

frequencies. The differential spectrogram signal in Figure 41 has significantly higher 

amount of area outside the ±2*STD_R region in blue. Please refer to section 3.2 for 

calculation of the STD_R region. Note the significant difference between times 0.7 ms to 

0.9 ms in Figure 41. The differential signal in Figure 42, on the other hand, has 

significantly less spikes outside the standard deviation region for an incorrect key guess 

of 0xE6. 
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Figure 41: DEMSA on PDA (correct key=0x5C) Figure 42: DEMSA on PDA (wrong 
key=0x37) 

 

Figure 43 shows the all keys search of 256 possible S-Box key values. The 

analysis computes and compares the total area of spectrogram spikes that are beyond the 

±2*STD_R region for all 256 possible key values of the AES S-Box being attacked. As 

demonstrated in Figure 43, the key value 0x5C has the highest amount of total area of 

PSD spikes beyond the 2 times standard deviation threshold region among all keys. 

Hence, the correct key is successfully recovered using the differential EM spectrogram 

analysis. 
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Figure 43: All Keys Search of DEMSA on PDA 
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4.4.2 EM Analysis on AES with Countermeasure 

Without countermeasure implemented, DEMA already fails because of trace 

misalignment. Since DEMFA and DEMSA can both extract the correct key, the original 

AES encryption algorithm is modified to implement a countermeasure called Split Mask. 

For implementation details of the Split Mask countermeasure, refer to [9]. The purpose of 

this experiment is to investigate whether DEMFA and DEMSA can defect the masking 

countermeasure. 

4.4.2.1 Differential EM Frequency Analysis (DEMFA) 

First, the frequency analysis is performed on the AES implementation with Split Mask 

countermeasure. Figure 44 shows the all keys search of 256 possible key values. The 

analysis computes and compares the total area of PSD spikes that are beyond the 

±2*STD_R region for all 256 possible key values of the AES S-Box being attacked. As 

shown in Figure 44, the correct key value 0x5C does not the highest amount of total area 

of PSD spikes beyond the 2 times standard deviation threshold region among all keys. 

The correct key is not extracted using DEMFA. Hence, the Differential Frequency 

Analysis is not able to defect the Split Mask countermeasure. 
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Figure 44: All Keys Search of DEMFA on PDA for AES with Countermeasure 

4.4.2.2 Differential EM Spectrogram Analysis (DEMSA) 

Next, the spectrogram analysis is performed on the AES implementation with Split Mask 

countermeasure. Figure 45 shows the all keys search of 256 possible key values. The 
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analysis computes and compares the total area of spectrogram spikes that are beyond the 

±2*STD_R region for all 256 possible key values of the AES S-Box being attacked. As 

indicated in Figure 45, the key value 0x5C does not have the highest amount of total area 

of PSD spikes beyond the 2 times standard deviation threshold region among all keys. 

Hence, the correct key also cannot be extracted using DEMSA when the Split Mask 

countermeasure is implemented. 
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Figure 45: All Keys Search of DEMSA on PDA for AES with Countermeasure 

4.4.2.3 Waddle’s FFT 2DPA Attack 

It is predicted that both frequency and spectrogram analysis cannot defect the masking 

countermeasure. Recall that the aim of these 2 attacks is to resolve trace misalignment 

encountered in first-order analysis. In fact, to overcome the masking countermeasure, a 

higher-order analysis is required. Waddle’s FFT 2DPA attack is a second-order 

differential power analysis that is proposed to defeat masking countermeasure. Refer to 

Section 3.5.3 for details about this attack. The purpose of this test is to present 

experimental results of this attack. 

 

Figure 46 shows the all keys search for 256 possible values. The differential time 

signal is computed by subtracting the average of autocorrelation of traces in group 0 from 

the average of autocorrelation of traces in group 1. The analysis computes and compares 

the total area of time spikes that are beyond the ±2*STD_R region for all 256 possible 

key values of the AES S-Box being attacked. As shown in Figure 46, the key value 0x5C 
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does not have the highest amount of total area of PSD spikes beyond the 2 times standard 

deviation threshold region among all keys. Hence, the correct key cannot be extracted 

using Waddle’s FFT 2DPA analysis when the Split Mask countermeasure is implemented. 
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Figure 46: All Keys Search of FFT2DEMA on PDA for AES with Countermeasure 

One possible reason of the failure of this attack is that the process of correlation 

amplifies the noise, hence increasing standard deviation and requiring more samples to 

reliably differentiate distributions. Due to measurement equipment limitations, the attack 

is not feasible in this thesis. The author also suggested that such attack will likely to work 

only if the traces are fairly short and the correlated bit influence fairly large. However, 

this is not the case in this experiment. 

 

In summary, the experimental results from the PDA show that the EM emanation 

also leak key information about the Rijndael encryption algorithm. It is confirmed 

experimentally that DFA is more effective than previously researched DEMA when 

traces are misaligned in measurements.  
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4.5 Summary of Experimental Results 

Table 3 and Table 4 below summarize all the experimental results presented in this 

chapter. Results have shown that the proposed differential frequency attack can extract 

secret key under severe trace misalignment conditions. In addition, the frequency attack 

is shown experimentally to be able to defect the desynchronization countermeasure.  

Table 3: Summary of Experimental Results on ARM 

Experiments on ARM Normal AES AES with Random Time 
Shifts Countermeasure 

DEMA Correct key extracted Correct key NOT extracted 
DEMFA Correct key extracted Correct key extracted 
DPA Correct key extracted Correct key NOT extracted 
DPFA Correct key extracted Correct key extracted 
 

Table 4: Summary of Experimental Results on PDA 

Experiments on PDA Normal AES AES with Split Mask 
Countermeasure 

DEMA Correct key NOT extracted Correct key NOT extracted 
DEMFA Correct key extracted Correct key NOT extracted 
DEMSA Correct key extracted Correct key NOT extracted 
FFT 2DEMA Correct key NOT extracted Correct key NOT extracted 
 

To determine the signal quality, Table 5 summarizes the signal-to-noise ratio 

(SNR) of all data measured for this thesis. The SNR is computed as follows: SNR = 

10*log10(mean/standard deviation) (dB). The mean describes what is being measured, 

while the standard deviation represents noise the other interference. The standard 

deviation is not important in itself, but only in comparison to the mean. Therefore, it is 

valid to compare the SNR of EM and power data since the ratio of mean and standard 

deviation is unit-less. 
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As indicated in Table 5, the power data obtained from the ARM evaluation board 

has a higher SNR than the EM data obtained from the ARM evaluation board. Note that 

the higher the SNR, the better the signal quality. Moreover, the EM data obtained from 

the PDA has is slightly noisier than that from the ARM evaluation board since the PDA 

has a lower SNR. 

Table 5: Comparison of Signal-to-Noise Ratio for All Measurements 

Measurements Normal AES AES with Random Time 
Shifts Countermeasure 

EM data from ARM 5.2525 dB 5.2671 dB 
Power data from ARM 7.1339 dB 7.0647 dB 
EM data from PDA 4.4677 dB 4.8179 dB 
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5 Discussion 

This chapter discusses the experimental results, compares the DFA attack with previously 

researched side channel attacks, discusses the effectiveness of the DFA attack, and 

presents work to be done in the future. 

5.1 Comparison of Experimental Results to Previous Research 

5.1.1 Comparison to Previous Research on SPA and DPA 

In [1], [7], and [10], the security of the newly developed encryption standard, AES, 

against power analysis is never put in practice. No real power measurements were 

presented in all these literatures. This thesis investigates the effectiveness of differential 

power analysis (DPA) of AES on the ARM Integrator/C7TDMI core module with a 32-

bit processor. The secret key of the Rijndael encryption algorithm is successfully 

retrieved from the experiments. Experimental results indicate that like DES, AES is also 

vulnerable to DPA.  

5.1.2 Comparison to Previous Research on SEMA and DEMA 

Regarding EM measurements, a commercial EM probe is used for capturing EM signals 

from the ARM Integrator/C7TDMI core module and PDA in this thesis. By trial and error, 

it is observed that the magnetic probe with a shape of a 1-cm loop gives the best EM 

signal quality when the probe is placed in contact with the processor of the ARM 

Integrator/C7TDMI core module and PDA. No decapsulation is done to the processor 

chip. Comparing to previous research, different approaches were used to measure EM 

emanations. Some researchers built hand-made EM probes with different materials, 

shapes and sizes. EM probes were also located at a different distance from the chip in 

their experiments. In [5], Quisquater et al. used a simple flat coil so the variations of the 

electromagnetic field induce a current at the bounds. The sensor is placed under the smart 

card in the very close field. In [11], Gandolfi et al. used tiny hand-made probes, solenoids 

made of a coiled copper wire of outer diameters varying between 150 and 500 microns, 

for their EM measurements. They also stressed the importance to perform measurement 

as closely as possible to the chip by decapsulating the chip. Carlier et al. in [12] used 
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solenoid wires of copper consisting of a dozen of spires with a diameter of approximately 

1 mm for their EM measurements. They placed the probe as close as possible to the 

FPGA to increase the magnetic flux collected by the probe. In [3], all EM emanations are 

measured either in the near field or in the far field away from the smart card unlike this 

thesis, [5], [11], and [12]. 

 

Regarding experimental results, this thesis shows a SEMA trace where one can 

see distinctively 12 rounds of AES 192-bit encryption computation. DEMA attacks of 

AES are also performed on the ARM Integrator/C7TDMI core module and on the PDA. 

Results indicate that DEMA is able to extract the secret AES key from the ARM 

Integrator/C7TDMI core module. However, DEMA fails on the PDA because of trace 

misalignment. The thesis presents conclusive EM analysis results from the ARM 

Integrator/C7TDMI core module and PDA both with 32-bit processors. Comparing to 

previous research, no real experiments of SEMA or DEMA were put in practice on 32-bit 

processors and PDA’s. Gandolfi et al. only reported DEMA results of DES from an 8-bit 

CMOS microcontroller in [11]. The authors also compared DEMA results with DPA 

results in their paper. According to their experimental findings, although more noisy, EM 

measurements yield better differentials than power signals. DEMA’s signal-to-noise ratio 

was higher than that of DPA. This thesis also compares the characteristics of EM 

emanation with power consumption using the ARM Integrator/C7TDMI core module. 

Unlike [11], results from the ARM evaluation board show that EM curves appear to be 

noisier than power curves. The signal-to-noise ratio of power traces is higher than that of 

EM traces. In [3], Agrawal et al. had successfully demonstrated DEMA attacks of DES 

on smart cards. Unlike this thesis, [5], [11], and [12], the raw EM signals were AM 

demodulated at different intermediate carrier frequencies (harmonics of the clock 

frequency). This thesis also attempts Agrawal et al.’s AM demodulation approach on 

DEMA attacks as researched in [3]. However, DEMA with AM demodulation is not 

feasible on PDA experiments. Therefore, no experimental results on AM demodulation 

are reported. One reason of failing is that AM demodulation only works best at higher 

frequencies, whereas experiments done in this thesis are limited in lower frequencies. To 

perform AM demodulation, the sampling frequency Fs must satisfy Fs > 2 * Fc + BW, 
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where Fc is the carrier frequency and BW is the bandwidth of the modulated signal. 

Because of limited scope memory as already discussed in Section 4.1.3, the sampling 

frequency (Fs) of the signals captured from the PDA is much lower than the fundamental 

clock frequency (Fc) of the PDA. Since the condition of Fs > 2 * Fc + BW cannot be 

satisfied, it is thus not possible to perform the attack proposed in [3]. 

5.1.3 New Findings of Thesis 

Past research focuses primarily on the security of smart cards, 8-bit processors, and 

FPGA’s. No research has been done to study the threat of side channel attacks on 32-bit 

processors and PDA’s. Most experimental results presented so far are attacks on DES 

implementation; AES implementation is never studied. Comparing to previous research, 

this thesis is the first to report conclusive side channel attack results of AES 

implementation on an ARM Integrator/C7TDMI core module and a PDA. 

 

In addition, no methodology has been proposed to overcome these experimental 

issues in the past. Comparing to previous research, this thesis is the first one to address 

experimental issues encountered in PDA experiments where EM traces measured are 

temporally misaligned. This thesis proposed a new side channel attack called the 

Differential Frequency Analysis (DFA), which does not require perfect alignment of EM 

traces. Results from the ARM Integrator/C7TDMI core module also support the theory of 

DFA. It is confirmed experimentally that spikes appeared in the differential signal in time 

domain also appear in frequency domain, since any changes in the time domain signals 

would induce changes in the frequency domain signals. Hence, the correct key can be 

determined by examining the differential signal in the frequency domain.  

 

It is also demonstrated experimentally that the new frequency-based attack can be 

applied to both power analysis and EM analysis. Experimental results from the ARM 

core module indicate that the new DFA attack is as effective as DPA and DEMA to 

extract the secret key of the Rijndael encryption algorithm when no countermeasure is 

implemented. For PDA experiments, DEMA fails when temporal misalignment of traces 

is severe. The DFA is shown to be effective to overcome this experimental issue; it is 
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able to reveal the secret key of the AES encryption. Therefore, it is shown that DFA has 

the advantage over DEMA since it can be applied under trace misalignment conditions. 

 

In addition, results indicate that performing differential analysis in the frequency 

domain can defeat the desynchronization countermeasure against DPA and DEMA. 

Results show that the proposed first order DFA attack can efficiently overcome 

countermeasures that randomly insert delays without the need of launching a higher-order 

analysis. Thus, the proposed frequency-based attack is better then DPA and DEMA when 

the desynchronization countermeasure is implemented. However, when the Split Mask 

countermeasure is implemented to AES, DFA fails because DFA is a first order attack, it 

only aims to resolve trace misalignment problem. Therefore, higher order attack is 

required to defect the Split Mask countermeasure. 

5.1.4 Comparison to Previous Research on High Order Attacks 

Waddle et al. proposed an efficient second-order power analysis, FFT 2DPA, in [13]. 

Unlike Waddle’s high order attack which uses Fast Fourier Transform to overcome the 

masking countermeasure as a higher order differential analysis, the new DFA attack 

proposed in this thesis uses FFT to eliminate misalignment problem in traces encountered 

in experimental measurements. The analysis presented by Waddle et al. is still performed 

in the time domain, whereas the Differential Frequency Analysis is performed in the 

frequency domain. In addition, DFA does not require computing the inverse FFT to 

transform the signal back to the time domain. Therefore, it requires less computation time. 

In addition, the attack proposed in this thesis use a threshold signal of multiple standard 

deviations of means than a constant threshold value to better characterize the significance 

of spikes found in the differential signal.  

 

Once again, no real measurements are presented in [13]. This thesis is the first to 

put FFT 2DPA in practice. Results indicate that the secret key cannot be extracted from 

the AES implementation using Waddle’s FFT 2DPA analysis when the Split Mask 

countermeasure is implemented. Experimental results indicate that the difference of 

means of the autocorrelation is very noisy, no clear spikes are present. One possible 
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reason of the failure of this attack is that the process of correlation amplifies the noise, 

hence increasing standard deviation and requiring more samples to reliably differentiate 

the autocorrelation distributions. Due to measurement equipment limitations, the attack is 

not feasible in this thesis. The author also suggested that such attack will likely to work 

only if the traces are fairly short and the correlated bit influence fairly large. However, 

this is not the case in the experiment in this thesis. In practice, FFT 2DPA suffers from 

too much noise amplification to be generally effective. 

5.1.5 Comparison to Previous Research on Frequency Analysis 

Differential spectrogram analysis (DSA) is a time-dependent frequency-based attack 

proposed by Gebotys et al. in [15]. Comparing to DFA, DSA has the advantage of being 

capable to locate the time segment where the differential time signal occurs. However, 

DSA is computationally longer than DFA. Unlike DSA, the new attack proposed in this 

thesis computes the power spectral density of each trace instead of the spectrogram. DFA 

is best in practice when the adversary already know about where the attack point occurs 

in time. Spectrogram comes in handy when the attacker has no idea where the differential 

occurs. Both DFA and DSA can extract the secret key when DEMA fails. 

 

Regarding experiments on PDA, both DFA and DSA can overcome trace 

misalignment problem and extract the secret key effectively. However, DFA and DSA 

both fail when the Split Mask countermeasure is implemented to AES.  

5.2 Advantages 

There are 4 major advantages of using frequency domain signals in differential analysis. 

The main advantage of DFA is its capability of breaking a cryptosystem under severe 

temporal misalignment of traces. Before the DFA is proposed, one would need to first 

align traces and then perform normal differential time analysis such as DEMA and DPA. 

Some signal processing techniques such as cross-correlation might be able to align these 

temporally shifted traces. However, misalignment problems are not constant within each 

acquisition. Normally, there are more than a thousand traces in each acquisition. In order 

to compute the cross-correlation of 2 misaligned traces, one has to find out the shifts, n, 
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between these 2 traces. Hence, computing the cross-correlation for thousands of traces is 

difficult and computationally time consuming. With DFA, attackers are not required to 

perform the extra step to align every single temporally shifted trace. The DFA attack only 

requires a simple pre-processing stage to transform time signals to the frequency domain.  

 

Secondly, the frequency domain signals are better than time domain signals for 

differential analysis. Frequency analysis may reveal loops and other repeating structures 

in a signal, which is not possible with time domain analysis. More importantly, frequency 

signals are less sensitive to random jitters and delays than time signals. Also, DFA is 

applicable to both power consumption and EM emanation.  

 

Thirdly, DFA is proved to be capable of defecting desynchronization 

countermeasures that randomly inserts time shifts.  

 

Lastly, our results showed that the use of DFA on the PDA has the advantage of 

reducing the key search space, unlike brute-force attacks. A brute-force attack is 

impossible for an AES 128-bit key since there are 2128 possible key searches. On the other 

hand, the Differential Frequency Analysis is only performed on each of the 8-bit S-Boxes. 

For AES 128-bit, there are 16 S-Boxes in total. Therefore, the key search space is 

reduced to 16 * 256 = 4096. 

5.3 Disadvantages 

There are 2 major disadvantages of using frequency domain signals in differential 

analysis. A major flaw in the DFA attack is the fact that it reveals no information of when 

data-dependant operations occur in time unlike normal DEMA and DPA. However, it is 

important to note that the main interest of an attacker is the secret key. Therefore, DFA is 

still an attractive technique for attacking mobile devices. 

 

Secondly, there is a computation overhead of transforming time domain signals to 

frequency domain. The total runtime of DFA attacking an 8-bit S-Box is 

θ(nmlogm+256nm). As for the runtime of normal DEMA or DPA attack, there is no need 
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of preprocessing. The total runtime is θ(256nm). Although DFA has a slightly higher 

computational overhead, but it is worthwhile for its effectiveness of breaking the 

conventional symmetric key algorithm under severe trace misalignment experimental 

conditions. 

5.4 Limitations 

Differential Frequency Analysis (DFA) has fewer limitations than DEMA and DPA since 

it does not require perfect trace alignment to retrieve the secret key of AES. DFA is 

general and can be applied to embedded systems other than the PDA and to power traces 

as well as EM traces. The proposed DFA attack is not limited to AES. It could be used in 

other symmetric key algorithms such as DES, CAST 128, etc., where attacks at the output 

of S-Box are applicable. 

 

All experiments presented in this thesis are subject to certain limitations. One of 

the major limitations is the number of traces acquired. Being a high-level programming 

language, Java is much slower than the assembly language. Since the number of traces 

measured is limited by the scope memory as described in Section 4.1.3, it is not possible 

to capture a large number of traces from the PDA unlike the ARM evaluation board. In 

fact, the AES encryption program written in assembly is at least hundred times faster than 

the AES Java program for the PDA. As a result, having a longer frame would sacrifice 

the number of traces acquired. In addition, other portable devices, unlike the PDA under 

test in this thesis, would shut down automatically after running the encryption over a 

certain number of times for security reason. Therefore, the number of traces acquired for 

DFA may be restricted by the automatic shutdown of these embedded systems. 

 

In addition, the fixed scope memory size also restricts the frequency span of the 

signal captured. A longer frame not only sacrifices the number of traces acquired as 

discussed earlier but also the sampling rate. Recall the frequency span is half of the 

sampling rate. As a result, all the measured data from the PDA have a low frequency span. 

AM demodulation is not feasible to raw EM data obtained from the PDA. 
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 Another limitation of DFA is that it requires the attacker to have knowledge about 

where the data dependency occurs. DFA works at best when the adversary can pinpoint 

the time where there is a significant correlation between EM emanation and data values 

being manipulated. Moreover, the attacker is required to have knowledge and control of 

the input plaintexts for the AES encryption in order to partition traces into 2 groupings. 

5.5 Future Work 

There are several experiments worth undertaking in the future. The first experiment is to 

investigate the effectiveness of the Differential Frequency Analysis for higher-order 

attacks. Due to the time constraint and some limitations discussed in this chapter, this 

thesis only uses the frequency analysis in first order attacks. The extension of DFA to 

higher order analysis is definitely the subject of future work. 

 

The proposed DFA attack is not limited to its application on symmetric key 

algorithms. It could also be applied to other cryptographic algorithms such as public key 

algorithms. It is worth to experiment DFA attack on the Elliptic Curve Cryptography 

(ECC) which is widely implemented on embedded systems for its efficient computation. 

 

Knowing that DFA is such a powerful technique, it is also of interest to investigate 

countermeasures for this frequency-based attack in order to better protect wireless 

embedded systems from adversaries in future research. 
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6 Conclusion 

In summary, this thesis is the first to investigate the threat of EM analysis on PDA’s. This 

thesis also presents for the first time EM analysis measurement results of AES 

implementation on a PDA.  

 

This thesis first compares the characteristics of EM emanation with power 

consumption using the ARM Integrator/C7TDMI core module. Results show that EM 

curves appear to be noisier than power curves because the signal-to-noise ratio of power 

traces is higher than that of EM traces. For a normal AES implementation on the ARM 

Integrator/C7TDMI core module, both DEMA and DPA can extract the secret key easily. 

However, when the desynchronization countermeasure is implemented on AES, DEMA 

and DPA fail. The proposed Differential Frequency Analysis (DFA) is shown to be able 

to defect such countermeasure that inserts random delay. It is also illustrated in this thesis 

that the Differential Frequency Analysis can be applied to both power and EM data. It is 

also confirmed experimentally that spikes appeared in the differential signal in time 

domain also appear in frequency domain, since any changes in the time domain signals 

would induce changes in the frequency domain signals. 

 

There is a difficulty of measuring power consumption from the PDA under test. 

Therefore, EM emanation is the preferred source for differential analysis in this thesis. It 

is shown that one can determine the key length used in a Rijndael encryption by simply 

observing a single EM trace in the attack known as the simple EM analysis (SEMA). 

 

In addition, this thesis is the first to address the severe issues of trace 

misalignment on PDA experiments. This work proposes a new side channel attack called 

the Differential Frequency Analysis, which does not require perfect alignment of EM 

traces, thus supporting attacks on wireless embedded systems. DEMA fail when traces 

are misaligned. On the other hand, DFA is shown experimentally that it can overcome 

this problem and extract the secret key successfully.  
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Other than the new DFA attack, this thesis also performs other side channel 

attacks proposed in previous research. Results from differential spectrogram analysis 

(DSA) and Waddle’s FFT 2DPA attack, and are also presented in this work. DSA is as 

effective as DFA in retrieving the secret key of a normal Rijndael implementation. 

Furthermore, this thesis studies the effectiveness of 2 previously researched 

countermeasures for the Rijndael encryption implementation: the desynchronization 

countermeasure and the Split Mask countermeasure. The proposed Differential 

Frequency Analysis (DFA) is shown to be able to defect countermeasure that inserts 

random delay. However, DFA and DSA fail when the Split Mask countermeasure is 

implemented to AES on the PDA. Waddle’s FFT 2DPA attack is also performed on the 

Split Mask countermeasure. However, this attack cannot extract the secret key as it has 

claimed by the authors. 

 

In conclusion, this thesis makes progress in side channel attacks and is important 

for future wireless embedded systems, which will increasingly demand higher levels of 

data security measures. This work can help users, developers, and product designers to 

gain a deeper understanding of the side channel security risks that these portable devices 

introduce.  
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Appendix 

Appendix 1 – MATLAB program of DFA attack 

 
% pdaDFA -- Differential Frequency Analysis for PDA 
% datFileStr = data file name from scope (string) 
% hdrFileStr = header file name from scope(string) 
 
function pdaDFA(datFileStr,hdrFileStr) 
 
raw_samples = load(datFileStr); 
res = dlmread(hdrFileStr); 
 
record_length=res(1); 
frame_count=res(6)/2; 
tot_frame=res(6); 
hdr_sample_freq=1/res(2); 
hdr_sample_period=res(2); 
f=0:hdr_sample_freq/1e6/record_length:hdr_sample_freq/1e6-
hdr_sample_freq/1e6/record_length; 
t=0:hdr_sample_period:hdr_sample_period*record_length-hdr_sample_period; 
 
samples = zeros(frame_count*2, record_length); 
for k = 0:(frame_count*2-1) 
    samples(k+1,:) = (raw_samples(k*record_length+1:(k+1)*record_length))';  
end 
 
samples = samples'; 
clear raw_samples; 
save('samples.mat'); 
 
sumPeaks=zeros(256, 1); 
save sumPeaks.mat datFileStr sumPeaks; 
clear; 
 
for k=0:255 
    keyStr = num2str(dec2hex(k, 2)); 
    save('keyStr'); 
    display(keyStr); 
         
clear; 
load('keyStr'); 
load('samples.mat'); 
 
if(size(samples,2)==record_length) 
    display('need transpose'); 
    samples = samples'; 
end 
 
javaMethod('pda1SBoxSplitPt', 'splitPt', hex2dec(keyStr), tot_frame); 
 
% Set 0 
index0 = load(strcat(keyStr, '_pda_index0.txt')); 
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array0 = zeros(record_length, length(index0)); 
array0_length = length(index0); 
 
for i=1:length(index0) 
    array0(:,i) = samples(:, index0(i)+1); 
end 
 
% Set 1 
index1 = load(strcat(keyStr, '_pda_index1.txt')); 
array1 = zeros(record_length, length(index1)); 
array1_length = length(index1); 
 
for i=1:length(index1) 
    array1(:, i) = samples(:, index1(i)+1); 
end 
 
delete(strcat(keyStr, '_pda_index0.txt')); 
delete(strcat(keyStr, '_pda_index1.txt')); 
 
clear samples; 
 
% set 0 
Y_bit0=fft(array0); 
 
tmp = zeros(record_length/2, length(index0)); 
tmp=Y_bit0(1:record_length/2,:); 
 
Pyy_bit0 = zeros(record_length/2, length(index0)); 
for i=1:record_length/2 
    Pyy_bit0(i,:) = (tmp(i,:).*conj(tmp(i,:)))/record_length; 
end 
 
clear Y_bit0; 
clear tmp; 
clear index0; 
 
% compute PSD 
PSD_mean_bit0 = mean(Pyy_bit0'); 
PSD_std_bit0 = std(Pyy_bit0'); 
clear Pyy_bit0; 
 
%set1 
Y_bit1=fft(array1); 
 
tmp = zeros(record_length/2, length(index1)); 
tmp=Y_bit1(1:record_length/2,:); 
 
Pyy_bit1 = zeros(record_length/2, length(index1)); 
for i=1:record_length/2 
    Pyy_bit1(i,:) = (tmp(i,:).*conj(tmp(i,:)))/record_length; 
end 
 
clear Y_bit1; 
clear tmp; 
clear index1; 
 
% compute PSD 
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PSD_mean_bit1 = mean(Pyy_bit1'); 
PSD_std_bit1 = std(Pyy_bit1'); 
clear Pyy_bit1; 
 
% differential PSD 
% for each point of frequency, check whether it's outside +/- 2*STD 
std_dom= sqrt( (PSD_std_bit0').^2./array0_length + 
(PSD_std_bit1').^2./array1_length); 
PSD_mean_diff = PSD_mean_bit0-PSD_mean_bit1; 
load('sumPeaks'); 
 
for i=1:length(PSD_mean_diff) 
    if(PSD_mean_diff(i) > 2*std_dom(i)) 
        sumPeaks(hex2dec(keyStr)+1)=sumPeaks(hex2dec(keyStr)+1)+PSD_mean_diff(i)-
2*std_dom(i); 
    elseif (PSD_mean_diff(i) < -2*std_dom(i)) 
        sumPeaks(hex2dec(keyStr)+1)=sumPeaks(hex2dec(keyStr)+1)-2*std_dom(i)-
PSD_mean_diff(i);         
    end 
end 
 
% save data into text file 
save sumPeaks.mat datFileStr sumPeaks; 
 
    clear; 
    load('keyStr'); 
    k = hex2dec(keyStr) + 1; 
end 
 
% Key Guess 
[maxSumPeaks, correct_key] = max(sumPeaks); 
correct_key = correct_key - 1; 
display(strcat('Correct key is 0x',dec2hex(correct_key, 2))); 
 
load('sumPeaks.mat'); 
dlmwrite(strcat(datFileStr(1:length(datFileStr)-4), '_DFA.txt'), sumPeaks); 
delete('samples.mat'); 
delete('sumPeaks.mat'); 
delete('keyStr.mat'); 
 
return; 



 

90 

Appendix 2 – Java program of AES encryption algorithm on PDA 

 
public class AESencrypt 
{ 
    private final int Nb = 4; // words in a block, always 4 for now 
    private int Nk; // number of 32-bit words, 4 (128-bit), 6 (192-bit), 8 (256-bit) 
    private int Nr; // number of rounds, = Nk + 6 
    private int wCount; // position in w for RoundKey (= 0 each encrypt) 
    private AEStables tab; // all the tables needed for AES 
    private byte[] w; // the expanded key 
    private long[] t; // for 4 SBox implementation 
    private byte[][] state; // the state array 
     
    // AESencrypt: constructor for class. Mainly expands key 
    public AESencrypt(byte[] key) 
    { 
        // words in a key, = 4, or 6, or 8 
        if (key.length == 16) 
            Nk = 4; 
        else if (key.length == 24) 
            Nk = 6; 
        else if (key.length == 32) 
            Nk = 8; 
         
        Nr = Nk + 6; // corresponding number of rounds 
        tab = new AEStables(); // class to give values of various functions 
        w = new byte[4*Nb*(Nr+1)]; // room for expanded key 
        t = new long[4]; 
        state = new byte[4][Nb]; 
        KeyExpansion(key, w); // length of w depends on Nr 
    } 
     
    public void normalAES(byte[] in, byte[] out) 
    { 
        wCount = 0; // count bytes in expanded key throughout encryption 
        Copy.copy(state, in); // actual component-wise copy 
        AddRoundKey(state); // xor with expanded key 
        for (int round = 1; round < Nr; round++) 
        { 
            SubBytes(state); // S-box substitution 
            ShiftRows(state); // mix up rows 
            MixColumns(state); // complicated mix of columns 
            AddRoundKey(state); // xor with expanded key 
        }    
        SubBytes(state); // S-box substitution 
        ShiftRows(state); // mix up rows 
        AddRoundKey(state); // xor with expanded key 
        Copy.copy(out, state);         
    } 
     
    public void normalAESwSplitMask(byte[] in, byte[] out) 
    { 
        wCount = 0; // count bytes in expanded key throughout encryption 
        Copy.copy(state, in); // actual component-wise copy 
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        AddRoundKey(state); // xor with expanded key 
        for (int round = 1; round < Nr; round++) 
        { 
            SubBytesSplitMask(state); // S-box substitution 
            ShiftRows(state); // mix up rows 
            MixColumns(state); // complicated mix of columns 
            AddRoundKeySplitMask(state); // xor with expanded key 
        } 
        SubBytesSplitMask(state); // S-box substitution 
        ShiftRows(state); // mix up rows 
        AddRoundKeySplitMask(state); // xor with expanded key 
        Copy.copy(out, state);         
    }     
         
    public void optAES(byte[] in, byte[] out) 
    { 
        wCount = 0; // count bytes in expanded key throughout encryption 
        Copy.copy(state, in); // actual component-wise copy 
        AddRoundKey(state); // xor with expanded key 
        t[0] = 0; 
        t[1] = 0; 
        t[2] = 0; 
        t[3] = 0; 
                        
        for (int round = 1; round < Nr; round++) 
        { 
            t[0] = tab.Te0(state[0][0]) ^ tab.Te1(state[1][1]) ^ 

 tab.Te2(state[2][2]) ^ tab.Te3(state[3][3]); 
            t[1] = tab.Te0(state[1][0]) ^ tab.Te1(state[2][1]) ^ 

 tab.Te2(state[3][2]) ^ tab.Te3(state[0][3]); 
            t[2] = tab.Te0(state[2][0]) ^ tab.Te1(state[3][1]) ^ 

 tab.Te2(state[0][2]) ^ tab.Te3(state[1][3]); 
            t[3] = tab.Te0(state[3][0]) ^ tab.Te1(state[0][1]) ^ 

 tab.Te2(state[1][2]) ^ tab.Te3(state[2][3]); 
                                     
            state[0][0] = (byte) (t[0] >> 24); 
            state[1][0] = (byte) (t[0] >> 16); 
            state[2][0] = (byte) (t[0] >> 8); 
            state[3][0] = (byte) (t[0]); 
             
            state[0][1] = (byte) (t[3] >> 16); 
            state[1][1] = (byte) (t[3] >> 8); 
            state[2][1] = (byte) (t[3]); 
            state[3][1] = (byte) (t[3] >> 24); 
             
            state[0][2] = (byte) (t[2] >> 8); 
            state[1][2] = (byte) (t[2]); 
            state[2][2] = (byte) (t[2] >> 24); 
            state[3][2] = (byte) (t[2] >> 16); 
             
            state[0][3] = (byte) (t[1]); 
            state[1][3] = (byte) (t[1] >> 24); 
            state[2][3] = (byte) (t[1] >> 16); 
            state[3][3] = (byte) (t[1] >> 8); 
             
            AddRoundKey(state); // xor with expanded key 
        } 
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        // table Te4 doesn't have the MixColumn operation 
        t[0] = (tab.Te4(state[2][3]) & 0xff0000L)  

^ (tab.Te4(state[0][0]) & 0xff000000L) 
^ (tab.Te4(state[0][2]) & 0xff00L) 
^ (tab.Te4(state[2][1]) & 0xffL); 

        t[1] = (tab.Te4(state[3][2]) & 0xff0000L) 
^ (tab.Te4(state[1][3]) & 0xff000000L) 
^ (tab.Te4(state[1][1]) & 0xff00L) 
^ (tab.Te4(state[3][0]) & 0xffL); 

        t[2] = (tab.Te4(state[0][1]) & 0xff0000L) 
^ (tab.Te4(state[2][2]) & 0xff000000L) 
^ (tab.Te4(state[2][0]) & 0xff00L) 
^ (tab.Te4(state[0][3]) & 0xffL); 

        t[3] = (tab.Te4(state[1][0]) & 0xff0000L) 
^ (tab.Te4(state[3][1]) & 0xff000000L) 
^ (tab.Te4(state[3][3]) & 0xff00L) 
^ (tab.Te4(state[1][2]) & 0xffL); 

         
        state[0][0] = (byte) (t[0] >> 24); 
        state[1][0] = (byte) (t[1] >> 8); 
        state[2][0] = (byte) (t[2] >> 24); 
        state[3][0] = (byte) (t[3] >> 8); 
             
        state[0][1] = (byte) (t[2] >> 16); 
        state[1][1] = (byte) (t[3]); 
        state[2][1] = (byte) (t[0] >> 16); 
        state[3][1] = (byte) (t[1]); 
             
        state[0][2] = (byte) (t[0] >> 8); 
        state[1][2] = (byte) (t[1] >> 24); 
        state[2][2] = (byte) (t[2] >> 8); 
        state[3][2] = (byte) (t[3] >> 24); 
            
        state[0][3] = (byte) (t[2]); 
        state[1][3] = (byte) (t[3] >> 16); 
        state[2][3] = (byte) (t[0]); 
        state[3][3] = (byte) (t[1] >> 16);         
         
        AddRoundKey(state); // xor with expanded key 
        Copy.copy(out, state);         
    } 
     
    // Cipher: actual AES encrytion 
    public void optAESwSplitMask(byte[] in, byte[] out) 
    { 
        wCount = 0; // count bytes in expanded key throughout encryption 
        Copy.copy(state, in); // actual component-wise copy 
        AddRoundKey(state); // xor with expanded key 
        long t0 = 0; 
        long t1 = 0; 
        long t2 = 0; 
        long t3 = 0; 
        long m0 = 0; 
        long m1 = 0; 
        long m2 = 0; 
        long m3 = 0; 
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        for (int round = 1; round < Nr; round++) 
        {                    
            t0 = (tab.MTe0(state[0][0]) ^ tab.MTe1(state[1][1]) 

^ tab.MTe2(state[2][2]) ^ tab.MTe3(state[3][3])) & 0xffffffffL; 
            m0 = (tab.MOpt(state[0][0]) ^ tab.MOpt(state[1][1]) 

^ tab.MOpt(state[2][2]) ^ tab.MOpt(state[3][3])) & 0xffffffffL; 
            t0 = t0 ^ m0; 
             
            t1 = (tab.MTe0(state[1][0]) ^ tab.MTe1(state[2][1]) 

^ tab.MTe2(state[3][2]) ^ tab.MTe3(state[0][3])) & 0xffffffffL; 
            m1 = (tab.MOpt(state[1][0]) ^ tab.MOpt(state[2][1]) 

^ tab.MOpt(state[3][2]) ^ tab.MOpt(state[0][3])) & 0xffffffffL; 
            t1 = t1 ^ m1; 
             
            t2 = (tab.MTe0(state[2][0]) ^ tab.MTe1(state[3][1]) 

^ tab.MTe2(state[0][2]) ^ tab.MTe3(state[1][3])) & 0xffffffffL; 
            m2 = (tab.MOpt(state[2][0]) ^ tab.MOpt(state[3][1]) 

^ tab.MOpt(state[0][2]) ^ tab.MOpt(state[1][3])) & 0xffffffffL; 
            t2 = t2 ^ m2; 
             
            t3 = (tab.MTe0(state[3][0]) ^ tab.MTe1(state[0][1]) 

^ tab.MTe2(state[1][2]) ^ tab.MTe3(state[2][3])) & 0xffffffffL;   
            m3 = (tab.MOpt(state[3][0]) ^ tab.MOpt(state[0][1]) 

^ tab.MOpt(state[1][2]) ^ tab.MOpt(state[2][3])) & 0xffffffffL; 
            t3 = t3 ^ m3; 
                                     
            state[0][0] = (byte) (t0 >> 24); 
            state[1][0] = (byte) (t0 >> 16); 
            state[2][0] = (byte) (t0 >> 8); 
            state[3][0] = (byte) (t0); 
             
            state[0][1] = (byte) (t3 >> 16); 
            state[1][1] = (byte) (t3 >> 8); 
            state[2][1] = (byte) (t3); 
            state[3][1] = (byte) (t3 >> 24); 
             
            state[0][2] = (byte) (t2 >> 8); 
            state[1][2] = (byte) (t2); 
            state[2][2] = (byte) (t2 >> 24); 
            state[3][2] = (byte) (t2 >> 16); 
             
            state[0][3] = (byte) (t1); 
            state[1][3] = (byte) (t1 >> 24); 
            state[2][3] = (byte) (t1 >> 16); 
            state[3][3] = (byte) (t1 >> 8); 
                    
            AddRoundKey(state); // xor with expanded key 
        } 
                 
        // table Te4 doesn't have the MixColumn operation 
        t0 = ((tab.MTe4(state[2][3]) & 0xff0000L)  

^ (tab.MTe4(state[0][0]) & 0xff000000L) 
^ (tab.MTe4(state[0][2]) & 0xff00L) 
^ (tab.MTe4(state[2][1]) & 0xffL)) & 0xffffffffL; 

        t1 = ((tab.MTe4(state[3][2]) & 0xff0000L) 
^ (tab.MTe4(state[1][3]) & 0xff000000L) 
^ (tab.MTe4(state[1][1]) & 0xff00L) 
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^ (tab.MTe4(state[3][0]) & 0xffL)) & 0xffffffffL; 
        t2 = ((tab.MTe4(state[0][1]) & 0xff0000L) 

^ (tab.MTe4(state[2][2]) & 0xff000000L) 
^ (tab.MTe4(state[2][0]) & 0xff00L)  
^ (tab.MTe4(state[0][3]) & 0xffL)) & 0xffffffffL; 

        t3 = ((tab.MTe4(state[1][0]) & 0xff0000L) 
^ (tab.MTe4(state[3][1]) & 0xff000000L) 
^ (tab.MTe4(state[3][3]) & 0xff00L) 
^ (tab.MTe4(state[1][2]) & 0xffL)) & 0xffffffffL; 

         
        m0 = ((tab.MOpt(state[2][3]) & 0xff0000L) 

^ (tab.MOpt(state[0][0]) & 0xff000000L) 
^ (tab.MOpt(state[0][2]) & 0xff00L) 
^ (tab.MOpt(state[2][1]) & 0xffL)) & 0xffffffffL; 

        m1 = ((tab.MOpt(state[3][2]) & 0xff0000L) 
^ (tab.MOpt(state[1][3]) & 0xff000000L) 
^ (tab.MOpt(state[1][1]) & 0xff00L) 
^ (tab.MOpt(state[3][0]) & 0xffL)) & 0xffffffffL; 

        m2 = ((tab.MOpt(state[0][1]) & 0xff0000L) 
^ (tab.MOpt(state[2][2]) & 0xff000000L) 
^ (tab.MOpt(state[2][0]) & 0xff00L) 
^ (tab.MOpt(state[0][3]) & 0xffL)) & 0xffffffffL; 

        m3 = ((tab.MOpt(state[1][0]) & 0xff0000L) 
^ (tab.MOpt(state[3][1]) & 0xff000000L) 
^ (tab.MOpt(state[3][3]) & 0xff00L) 
^ (tab.MOpt(state[1][2]) & 0xffL)) & 0xffffffffL; 

 
        t0 = t0 ^ m0 ^ tab.maskOpt(); 
        t1 = t1 ^ m1 ^ tab.maskOpt(); 
        t2 = t2 ^ m2 ^ tab.maskOpt(); 
        t3 = t3 ^ m3 ^ tab.maskOpt(); 
         
        state[0][0] = (byte) (t0 >> 24); 
        state[1][0] = (byte) (t1 >> 8); 
        state[2][0] = (byte) (t2 >> 24); 
        state[3][0] = (byte) (t3 >> 8); 
             
        state[0][1] = (byte) (t2 >> 16); 
        state[1][1] = (byte) (t3); 
        state[2][1] = (byte) (t0 >> 16); 
        state[3][1] = (byte) (t1); 
             
        state[0][2] = (byte) (t0 >> 8); 
        state[1][2] = (byte) (t1 >> 24); 
        state[2][2] = (byte) (t2 >> 8); 
        state[3][2] = (byte) (t3 >> 24); 
            
        state[0][3] = (byte) (t2); 
        state[1][3] = (byte) (t3 >> 16); 
        state[2][3] = (byte) (t0); 
        state[3][3] = (byte) (t1 >> 16);         
         
        AddRoundKey(state); // xor with expanded key 
        Copy.copy(out, state);         
    }    
     
    // KeyExpansion: expand key, byte-oriented code, but tracks words 
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    // KeyExpansion generates a total of Nb*(Nr+1) words each of 4-byte 
    private void KeyExpansion(byte[] key, byte[] w) 
    { 
        byte[] temp = new byte[4]; 
        // first just copy key to w 
        int j = 0; 
        while (j < 4*Nk) 
        { 
            w[j] = key[j++]; 
        } 
        // here j == 4*Nk; 
        int i; 
        while(j < 4*Nb*(Nr+1)) 
        { 
            i = j/4; // j is always multiple of 4 here 
            // handle everything word-at-a time, 4 bytes at a time 
            for (int iTemp = 0; iTemp < 4; iTemp++) 
                temp[iTemp] = w[j-4+iTemp]; 
                 
            if (i % Nk == 0) 
            { 
                byte ttemp, tRcon; 
                byte oldtemp0 = temp[0]; 
                for (int iTemp = 0; iTemp < 4; iTemp++) 
                { 
                    if (iTemp == 3) ttemp = oldtemp0; 
                    else ttemp = temp[iTemp+1]; 
                    if (iTemp == 0) tRcon = tab.Rcon(i/Nk); 
                    else tRcon = 0; 
                    temp[iTemp] = (byte)(tab.SBox(ttemp) ^ tRcon); 
                } 
            } 
            else if (Nk > 6 && (i%Nk) == 4) 
            { 
                for (int iTemp = 0; iTemp < 4; iTemp++) 
                    temp[iTemp] = tab.SBox(temp[iTemp]); 
            } 
             
            for (int iTemp = 0; iTemp < 4; iTemp++) 
                w[j+iTemp] = (byte)(w[j - 4*Nk + iTemp] ^ temp[iTemp]); 
            j = j + 4; 
        } 
    } 
              
    // ShiftRows: simple circular shift of rows 1, 2, 3 by 1, 2, 3 
    private void ShiftRows(byte[][] state) 
    { 
        byte[] t = new byte[4]; 
        for (int r = 1; r < 4; r++) 
        { 
            for (int c = 0; c < Nb; c++) 
                t[c] = state[r][(c + r)%Nb]; 
            for (int c = 0; c < Nb; c++) 
                state[r][c] = t[c]; 
        } 
    } 
     



 

96 

    // MixColumns: complex and sophisticated mixing of columns 
    private void MixColumns(byte[][] s) 
    { 
        int[] sp = new int[4]; 
        byte b02 = (byte)0x02, b03 = (byte)0x03; 
        for (int c = 0; c < 4; c++) 
        { 
            sp[0] = tab.FFMul(b02, s[0][c]) ^ tab.FFMul(b03, s[1][c]) ^ 
                    s[2][c] ^ s[3][c]; 
            sp[1] = s[0][c] ^ tab.FFMul(b02, s[1][c]) ^ 
                    tab.FFMul(b03, s[2][c]) ^ s[3][c]; 
            sp[2] = s[0][c] ^ s[1][c] ^ 
                    tab.FFMul(b02, s[2][c]) ^ tab.FFMul(b03, s[3][c]); 
            sp[3] = tab.FFMul(b03, s[0][c]) ^ s[1][c] ^ 
                              s[2][c] ^ tab.FFMul(b02, s[3][c]); 
            for (int i = 0; i < 4; i++) 
                s[i][c] = (byte)(sp[i]); 
        } 
    }     
 
    // AddRoundKey: xor a portion of expanded key with state 
    private void AddRoundKey(byte[][] state) 
    { 
        for (int c = 0; c < Nb; c++) 
            for (int r = 0; r < 4; r++) 
                state[r][c] = (byte)(state[r][c] ^ w[wCount++]); 
    } 
     
    // need to unmask after each round for the normal AES impl. 
    private void AddRoundKeySplitMask(byte[][] state) 
    { 
        for (int c = 0; c < Nb; c++) 
        { 
            for (int r = 0; r < 4; r++) 
            { 
                state[r][c] = (byte)(state[r][c] ^ tab.maskNorm()); 
                state[r][c] = (byte)(state[r][c] ^ w[wCount++]); 
            } 
        } 
    } 
         
    // SubBytes: apply Sbox substitution to each byte of state 
    private void SubBytes(byte[][] state) 
    { 
        for (int row = 0; row < 4; row++) 
            for (int col = 0; col < Nb; col++) 
                state[row][col] = tab.SBox(state[row][col]); 
    } 
     
    // need to unmask after each round for the normal AES impl. 
    private void SubBytesSplitMask(byte[][] state) 
    { 
        for (int row = 0; row < 4; row++) 
        { 
            for (int col = 0; col < Nb; col++) 
            { 
                byte index = state[row][col]; 
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                state[row][col] = tab.MSBox(index); 
                state[row][col] = (byte)(state[row][col] ^ tab.M(index)); 
            } 
        } 
    } 
} 
 
public class AEStables 
{ 
    public AEStables() 
    { 
        loadE(); 
        loadL(); 
        loadInv(); 
        loadS(); 
        loadInvS(); 
        loadPowX(); 
        genMTablesOrigAES(); 
        genMTablesOptAES(); 
    } 
     
    private byte[] E = new byte[256]; // "exp" table (base 0x03) 
    private byte[] L = new byte[256]; // "Log" table (base 0x03) 
    private byte[] S = new byte[256]; // SubBytes table 
    private byte[] invS = new byte[256]; // inverse of SubBytes table 
    private byte[] inv = new byte[256]; // multiplicative inverse table 
    private byte[] powX = new byte[15]; // powers of x = 0x02 
     
    /** 
     * MTe0 to MTe4 are the 4 masked S-Boxes for split mask countermeasure 
     * on the optimized AES implementation (same as ARM) 
     * MOpt is the M table for the optimized AES 
     */ 
    private long[] MTe0 = new long[256]; // masked Te0 
    private long[] MTe1 = new long[256]; // masked Te1 
    private long[] MTe2 = new long[256]; // masked Te2 
    private long[] MTe3 = new long[256]; // masked Te3 
    private long[] MTe4 = new long[256]; // masked Te4 
    private long[] MOpt = new long[256]; // M table 
    // this is the mask for the optimized AES implementation 
    private int maskOpt; 
     
    /** 
     * MS the masked S-Box for split mask countermeasure 
     * on the normal AES implementation with only 1 S-Box 
     * MOpt is the M table for the normal AES 
     */ 
    private byte[] MS = new byte[256]; // masked SBox 
    private byte[] M = new byte[256]; // M table for masked SBox 
    // this is the mask for the normal AES implementation 
    private byte maskNorm; 
     
    /** 
     * Te0 to Te4 are S-Boxes for the optimized AES implementation 
     * by Dr. Brian Gladman, they are taken from the assembly 
     * code from the ARM 
     */ 
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    private long[] Te0 = { 
    0xc66363a5L, 0xf87c7c84L, 0xee777799L, 0xf67b7b8dL, 
    0xfff2f20dL, 0xd66b6bbdL, 0xde6f6fb1L, 0x91c5c554L, 
    0x60303050L, 0x02010103L, 0xce6767a9L, 0x562b2b7dL, 
    0xe7fefe19L, 0xb5d7d762L, 0x4dababe6L, 0xec76769aL, 
    0x8fcaca45L, 0x1f82829dL, 0x89c9c940L, 0xfa7d7d87L, 
    0xeffafa15L, 0xb25959ebL, 0x8e4747c9L, 0xfbf0f00bL, 
    0x41adadecL, 0xb3d4d467L, 0x5fa2a2fdL, 0x45afafeaL, 
    0x239c9cbfL, 0x53a4a4f7L, 0xe4727296L, 0x9bc0c05bL, 
    0x75b7b7c2L, 0xe1fdfd1cL, 0x3d9393aeL, 0x4c26266aL, 
    0x6c36365aL, 0x7e3f3f41L, 0xf5f7f702L, 0x83cccc4fL, 
    0x6834345cL, 0x51a5a5f4L, 0xd1e5e534L, 0xf9f1f108L, 
    0xe2717193L, 0xabd8d873L, 0x62313153L, 0x2a15153fL, 
    0x0804040cL, 0x95c7c752L, 0x46232365L, 0x9dc3c35eL, 
    0x30181828L, 0x379696a1L, 0x0a05050fL, 0x2f9a9ab5L, 
    0x0e070709L, 0x24121236L, 0x1b80809bL, 0xdfe2e23dL, 
    0xcdebeb26L, 0x4e272769L, 0x7fb2b2cdL, 0xea75759fL, 
    0x1209091bL, 0x1d83839eL, 0x582c2c74L, 0x341a1a2eL, 
    0x361b1b2dL, 0xdc6e6eb2L, 0xb45a5aeeL, 0x5ba0a0fbL, 
    0xa45252f6L, 0x763b3b4dL, 0xb7d6d661L, 0x7db3b3ceL, 
    0x5229297bL, 0xdde3e33eL, 0x5e2f2f71L, 0x13848497L, 
    0xa65353f5L, 0xb9d1d168L, 0x00000000L, 0xc1eded2cL, 
    0x40202060L, 0xe3fcfc1fL, 0x79b1b1c8L, 0xb65b5bedL, 
    0xd46a6abeL, 0x8dcbcb46L, 0x67bebed9L, 0x7239394bL, 
    0x944a4adeL, 0x984c4cd4L, 0xb05858e8L, 0x85cfcf4aL, 
    0xbbd0d06bL, 0xc5efef2aL, 0x4faaaae5L, 0xedfbfb16L, 
    0x864343c5L, 0x9a4d4dd7L, 0x66333355L, 0x11858594L, 
    0x8a4545cfL, 0xe9f9f910L, 0x04020206L, 0xfe7f7f81L, 
    0xa05050f0L, 0x783c3c44L, 0x259f9fbaL, 0x4ba8a8e3L, 
    0xa25151f3L, 0x5da3a3feL, 0x804040c0L, 0x058f8f8aL, 
    0x3f9292adL, 0x219d9dbcL, 0x70383848L, 0xf1f5f504L, 
    0x63bcbcdfL, 0x77b6b6c1L, 0xafdada75L, 0x42212163L, 
    0x20101030L, 0xe5ffff1aL, 0xfdf3f30eL, 0xbfd2d26dL, 
    0x81cdcd4cL, 0x180c0c14L, 0x26131335L, 0xc3ecec2fL, 
    0xbe5f5fe1L, 0x359797a2L, 0x884444ccL, 0x2e171739L, 
    0x93c4c457L, 0x55a7a7f2L, 0xfc7e7e82L, 0x7a3d3d47L, 
    0xc86464acL, 0xba5d5de7L, 0x3219192bL, 0xe6737395L, 
    0xc06060a0L, 0x19818198L, 0x9e4f4fd1L, 0xa3dcdc7fL, 
    0x44222266L, 0x542a2a7eL, 0x3b9090abL, 0x0b888883L, 
    0x8c4646caL, 0xc7eeee29L, 0x6bb8b8d3L, 0x2814143cL, 
    0xa7dede79L, 0xbc5e5ee2L, 0x160b0b1dL, 0xaddbdb76L, 
    0xdbe0e03bL, 0x64323256L, 0x743a3a4eL, 0x140a0a1eL, 
    0x924949dbL, 0x0c06060aL, 0x4824246cL, 0xb85c5ce4L, 
    0x9fc2c25dL, 0xbdd3d36eL, 0x43acacefL, 0xc46262a6L, 
    0x399191a8L, 0x319595a4L, 0xd3e4e437L, 0xf279798bL, 
    0xd5e7e732L, 0x8bc8c843L, 0x6e373759L, 0xda6d6db7L, 
    0x018d8d8cL, 0xb1d5d564L, 0x9c4e4ed2L, 0x49a9a9e0L, 
    0xd86c6cb4L, 0xac5656faL, 0xf3f4f407L, 0xcfeaea25L, 
    0xca6565afL, 0xf47a7a8eL, 0x47aeaee9L, 0x10080818L, 
    0x6fbabad5L, 0xf0787888L, 0x4a25256fL, 0x5c2e2e72L, 
    0x381c1c24L, 0x57a6a6f1L, 0x73b4b4c7L, 0x97c6c651L, 
    0xcbe8e823L, 0xa1dddd7cL, 0xe874749cL, 0x3e1f1f21L, 
    0x964b4bddL, 0x61bdbddcL, 0x0d8b8b86L, 0x0f8a8a85L, 
    0xe0707090L, 0x7c3e3e42L, 0x71b5b5c4L, 0xcc6666aaL, 
    0x904848d8L, 0x06030305L, 0xf7f6f601L, 0x1c0e0e12L, 
    0xc26161a3L, 0x6a35355fL, 0xae5757f9L, 0x69b9b9d0L, 
    0x17868691L, 0x99c1c158L, 0x3a1d1d27L, 0x279e9eb9L, 
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    0xd9e1e138L, 0xebf8f813L, 0x2b9898b3L, 0x22111133L, 
    0xd26969bbL, 0xa9d9d970L, 0x078e8e89L, 0x339494a7L, 
    0x2d9b9bb6L, 0x3c1e1e22L, 0x15878792L, 0xc9e9e920L, 
    0x87cece49L, 0xaa5555ffL, 0x50282878L, 0xa5dfdf7aL, 
    0x038c8c8fL, 0x59a1a1f8L, 0x09898980L, 0x1a0d0d17L, 
    0x65bfbfdaL, 0xd7e6e631L, 0x844242c6L, 0xd06868b8L, 
    0x824141c3L, 0x299999b0L, 0x5a2d2d77L, 0x1e0f0f11L, 
    0x7bb0b0cbL, 0xa85454fcL, 0x6dbbbbd6L, 0x2c16163aL}; 
     
    private long[] Te1 = { 
    0xa5c66363l, 0x84f87c7cl, 0x99ee7777l, 0x8df67b7bl, 
    0x0dfff2f2l, 0xbdd66b6bl, 0xb1de6f6fl, 0x5491c5c5l, 
    0x50603030l, 0x03020101l, 0xa9ce6767l, 0x7d562b2bl, 
    0x19e7fefel, 0x62b5d7d7l, 0xe64dababl, 0x9aec7676l, 
    0x458fcacal, 0x9d1f8282l, 0x4089c9c9l, 0x87fa7d7dl, 
    0x15effafal, 0xebb25959l, 0xc98e4747l, 0x0bfbf0f0l, 
    0xec41adadl, 0x67b3d4d4l, 0xfd5fa2a2l, 0xea45afafl, 
    0xbf239c9cl, 0xf753a4a4l, 0x96e47272l, 0x5b9bc0c0l, 
    0xc275b7b7l, 0x1ce1fdfdl, 0xae3d9393l, 0x6a4c2626l, 
    0x5a6c3636l, 0x417e3f3fl, 0x02f5f7f7l, 0x4f83ccccl, 
    0x5c683434l, 0xf451a5a5l, 0x34d1e5e5l, 0x08f9f1f1l, 
    0x93e27171l, 0x73abd8d8l, 0x53623131l, 0x3f2a1515l, 
    0x0c080404l, 0x5295c7c7l, 0x65462323l, 0x5e9dc3c3l, 
    0x28301818l, 0xa1379696l, 0x0f0a0505l, 0xb52f9a9al, 
    0x090e0707l, 0x36241212l, 0x9b1b8080l, 0x3ddfe2e2l, 
    0x26cdebebl, 0x694e2727l, 0xcd7fb2b2l, 0x9fea7575l, 
    0x1b120909l, 0x9e1d8383l, 0x74582c2cl, 0x2e341a1al, 
    0x2d361b1bl, 0xb2dc6e6el, 0xeeb45a5al, 0xfb5ba0a0l, 
    0xf6a45252l, 0x4d763b3bl, 0x61b7d6d6l, 0xce7db3b3l, 
    0x7b522929l, 0x3edde3e3l, 0x715e2f2fl, 0x97138484l, 
    0xf5a65353l, 0x68b9d1d1l, 0x00000000l, 0x2cc1ededl, 
    0x60402020l, 0x1fe3fcfcl, 0xc879b1b1l, 0xedb65b5bl, 
    0xbed46a6al, 0x468dcbcbl, 0xd967bebel, 0x4b723939l, 
    0xde944a4al, 0xd4984c4cl, 0xe8b05858l, 0x4a85cfcfl, 
    0x6bbbd0d0l, 0x2ac5efefl, 0xe54faaaal, 0x16edfbfbl, 
    0xc5864343l, 0xd79a4d4dl, 0x55663333l, 0x94118585l, 
    0xcf8a4545l, 0x10e9f9f9l, 0x06040202l, 0x81fe7f7fl, 
    0xf0a05050l, 0x44783c3cl, 0xba259f9fl, 0xe34ba8a8l, 
    0xf3a25151l, 0xfe5da3a3l, 0xc0804040l, 0x8a058f8fl, 
    0xad3f9292l, 0xbc219d9dl, 0x48703838l, 0x04f1f5f5l, 
    0xdf63bcbcl, 0xc177b6b6l, 0x75afdadal, 0x63422121l, 
    0x30201010l, 0x1ae5ffffl, 0x0efdf3f3l, 0x6dbfd2d2l, 
    0x4c81cdcdl, 0x14180c0cl, 0x35261313l, 0x2fc3ececl, 
    0xe1be5f5fl, 0xa2359797l, 0xcc884444l, 0x392e1717l, 
    0x5793c4c4l, 0xf255a7a7l, 0x82fc7e7el, 0x477a3d3dl, 
    0xacc86464l, 0xe7ba5d5dl, 0x2b321919l, 0x95e67373l, 
    0xa0c06060l, 0x98198181l, 0xd19e4f4fl, 0x7fa3dcdcl, 
    0x66442222l, 0x7e542a2al, 0xab3b9090l, 0x830b8888l, 
    0xca8c4646l, 0x29c7eeeel, 0xd36bb8b8l, 0x3c281414l, 
    0x79a7dedel, 0xe2bc5e5el, 0x1d160b0bl, 0x76addbdbl, 
    0x3bdbe0e0l, 0x56643232l, 0x4e743a3al, 0x1e140a0al, 
    0xdb924949l, 0x0a0c0606l, 0x6c482424l, 0xe4b85c5cl, 
    0x5d9fc2c2l, 0x6ebdd3d3l, 0xef43acacl, 0xa6c46262l, 
    0xa8399191l, 0xa4319595l, 0x37d3e4e4l, 0x8bf27979l, 
    0x32d5e7e7l, 0x438bc8c8l, 0x596e3737l, 0xb7da6d6dl, 
    0x8c018d8dl, 0x64b1d5d5l, 0xd29c4e4el, 0xe049a9a9l, 
    0xb4d86c6cl, 0xfaac5656l, 0x07f3f4f4l, 0x25cfeaeal, 
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    0xafca6565l, 0x8ef47a7al, 0xe947aeael, 0x18100808l, 
    0xd56fbabal, 0x88f07878l, 0x6f4a2525l, 0x725c2e2el, 
    0x24381c1cl, 0xf157a6a6l, 0xc773b4b4l, 0x5197c6c6l, 
    0x23cbe8e8l, 0x7ca1ddddl, 0x9ce87474l, 0x213e1f1fl, 
    0xdd964b4bl, 0xdc61bdbdl, 0x860d8b8bl, 0x850f8a8al, 
    0x90e07070l, 0x427c3e3el, 0xc471b5b5l, 0xaacc6666l, 
    0xd8904848l, 0x05060303l, 0x01f7f6f6l, 0x121c0e0el, 
    0xa3c26161l, 0x5f6a3535l, 0xf9ae5757l, 0xd069b9b9l, 
    0x91178686l, 0x5899c1c1l, 0x273a1d1dl, 0xb9279e9el, 
    0x38d9e1e1l, 0x13ebf8f8l, 0xb32b9898l, 0x33221111l, 
    0xbbd26969l, 0x70a9d9d9l, 0x89078e8el, 0xa7339494l, 
    0xb62d9b9bl, 0x223c1e1el, 0x92158787l, 0x20c9e9e9l, 
    0x4987cecel, 0xffaa5555l, 0x78502828l, 0x7aa5dfdfl, 
    0x8f038c8cl, 0xf859a1a1l, 0x80098989l, 0x171a0d0dl, 
    0xda65bfbfl, 0x31d7e6e6l, 0xc6844242l, 0xb8d06868l, 
    0xc3824141l, 0xb0299999l, 0x775a2d2dl, 0x111e0f0fl, 
    0xcb7bb0b0l, 0xfca85454l, 0xd66dbbbbl, 0x3a2c1616l}; 
     
    private long[] Te2 = { 
    0x63a5c663l, 0x7c84f87cl, 0x7799ee77l, 0x7b8df67bl, 
    0xf20dfff2l, 0x6bbdd66bl, 0x6fb1de6fl, 0xc55491c5l, 
    0x30506030l, 0x01030201l, 0x67a9ce67l, 0x2b7d562bl, 
    0xfe19e7fel, 0xd762b5d7l, 0xabe64dabl, 0x769aec76l, 
    0xca458fcal, 0x829d1f82l, 0xc94089c9l, 0x7d87fa7dl, 
    0xfa15effal, 0x59ebb259l, 0x47c98e47l, 0xf00bfbf0l, 
    0xadec41adl, 0xd467b3d4l, 0xa2fd5fa2l, 0xafea45afl, 
    0x9cbf239cl, 0xa4f753a4l, 0x7296e472l, 0xc05b9bc0l, 
    0xb7c275b7l, 0xfd1ce1fdl, 0x93ae3d93l, 0x266a4c26l, 
    0x365a6c36l, 0x3f417e3fl, 0xf702f5f7l, 0xcc4f83ccl, 
    0x345c6834l, 0xa5f451a5l, 0xe534d1e5l, 0xf108f9f1l, 
    0x7193e271l, 0xd873abd8l, 0x31536231l, 0x153f2a15l, 
    0x040c0804l, 0xc75295c7l, 0x23654623l, 0xc35e9dc3l, 
    0x18283018l, 0x96a13796l, 0x050f0a05l, 0x9ab52f9al, 
    0x07090e07l, 0x12362412l, 0x809b1b80l, 0xe23ddfe2l, 
    0xeb26cdebl, 0x27694e27l, 0xb2cd7fb2l, 0x759fea75l, 
    0x091b1209l, 0x839e1d83l, 0x2c74582cl, 0x1a2e341al, 
    0x1b2d361bl, 0x6eb2dc6el, 0x5aeeb45al, 0xa0fb5ba0l, 
    0x52f6a452l, 0x3b4d763bl, 0xd661b7d6l, 0xb3ce7db3l, 
    0x297b5229l, 0xe33edde3l, 0x2f715e2fl, 0x84971384l, 
    0x53f5a653l, 0xd168b9d1l, 0x00000000l, 0xed2cc1edl, 
    0x20604020l, 0xfc1fe3fcl, 0xb1c879b1l, 0x5bedb65bl, 
    0x6abed46al, 0xcb468dcbl, 0xbed967bel, 0x394b7239l, 
    0x4ade944al, 0x4cd4984cl, 0x58e8b058l, 0xcf4a85cfl, 
    0xd06bbbd0l, 0xef2ac5efl, 0xaae54faal, 0xfb16edfbl, 
    0x43c58643l, 0x4dd79a4dl, 0x33556633l, 0x85941185l, 
    0x45cf8a45l, 0xf910e9f9l, 0x02060402l, 0x7f81fe7fl, 
    0x50f0a050l, 0x3c44783cl, 0x9fba259fl, 0xa8e34ba8l, 
    0x51f3a251l, 0xa3fe5da3l, 0x40c08040l, 0x8f8a058fl, 
    0x92ad3f92l, 0x9dbc219dl, 0x38487038l, 0xf504f1f5l, 
    0xbcdf63bcl, 0xb6c177b6l, 0xda75afdal, 0x21634221l, 
    0x10302010l, 0xff1ae5ffl, 0xf30efdf3l, 0xd26dbfd2l, 
    0xcd4c81cdl, 0x0c14180cl, 0x13352613l, 0xec2fc3ecl, 
    0x5fe1be5fl, 0x97a23597l, 0x44cc8844l, 0x17392e17l, 
    0xc45793c4l, 0xa7f255a7l, 0x7e82fc7el, 0x3d477a3dl, 
    0x64acc864l, 0x5de7ba5dl, 0x192b3219l, 0x7395e673l, 
    0x60a0c060l, 0x81981981l, 0x4fd19e4fl, 0xdc7fa3dcl, 
    0x22664422l, 0x2a7e542al, 0x90ab3b90l, 0x88830b88l, 
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    0x46ca8c46l, 0xee29c7eel, 0xb8d36bb8l, 0x143c2814l, 
    0xde79a7del, 0x5ee2bc5el, 0x0b1d160bl, 0xdb76addbl, 
    0xe03bdbe0l, 0x32566432l, 0x3a4e743al, 0x0a1e140al, 
    0x49db9249l, 0x060a0c06l, 0x246c4824l, 0x5ce4b85cl, 
    0xc25d9fc2l, 0xd36ebdd3l, 0xacef43acl, 0x62a6c462l, 
    0x91a83991l, 0x95a43195l, 0xe437d3e4l, 0x798bf279l, 
    0xe732d5e7l, 0xc8438bc8l, 0x37596e37l, 0x6db7da6dl, 
    0x8d8c018dl, 0xd564b1d5l, 0x4ed29c4el, 0xa9e049a9l, 
    0x6cb4d86cl, 0x56faac56l, 0xf407f3f4l, 0xea25cfeal, 
    0x65afca65l, 0x7a8ef47al, 0xaee947ael, 0x08181008l, 
    0xbad56fbal, 0x7888f078l, 0x256f4a25l, 0x2e725c2el, 
    0x1c24381cl, 0xa6f157a6l, 0xb4c773b4l, 0xc65197c6l, 
    0xe823cbe8l, 0xdd7ca1ddl, 0x749ce874l, 0x1f213e1fl, 
    0x4bdd964bl, 0xbddc61bdl, 0x8b860d8bl, 0x8a850f8al, 
    0x7090e070l, 0x3e427c3el, 0xb5c471b5l, 0x66aacc66l, 
    0x48d89048l, 0x03050603l, 0xf601f7f6l, 0x0e121c0el, 
    0x61a3c261l, 0x355f6a35l, 0x57f9ae57l, 0xb9d069b9l, 
    0x86911786l, 0xc15899c1l, 0x1d273a1dl, 0x9eb9279el, 
    0xe138d9e1l, 0xf813ebf8l, 0x98b32b98l, 0x11332211l, 
    0x69bbd269l, 0xd970a9d9l, 0x8e89078el, 0x94a73394l, 
    0x9bb62d9bl, 0x1e223c1el, 0x87921587l, 0xe920c9e9l, 
    0xce4987cel, 0x55ffaa55l, 0x28785028l, 0xdf7aa5dfl, 
    0x8c8f038cl, 0xa1f859a1l, 0x89800989l, 0x0d171a0dl, 
    0xbfda65bfl, 0xe631d7e6l, 0x42c68442l, 0x68b8d068l, 
    0x41c38241l, 0x99b02999l, 0x2d775a2dl, 0x0f111e0fl, 
    0xb0cb7bb0l, 0x54fca854l, 0xbbd66dbbl, 0x163a2c16l}; 
     
    private long[] Te3 = { 
    0x6363a5c6l, 0x7c7c84f8l, 0x777799eel, 0x7b7b8df6l, 
    0xf2f20dffl, 0x6b6bbdd6l, 0x6f6fb1del, 0xc5c55491l, 
    0x30305060l, 0x01010302l, 0x6767a9cel, 0x2b2b7d56l, 
    0xfefe19e7l, 0xd7d762b5l, 0xababe64dl, 0x76769aecl, 
    0xcaca458fl, 0x82829d1fl, 0xc9c94089l, 0x7d7d87fal, 
    0xfafa15efl, 0x5959ebb2l, 0x4747c98el, 0xf0f00bfbl, 
    0xadadec41l, 0xd4d467b3l, 0xa2a2fd5fl, 0xafafea45l, 
    0x9c9cbf23l, 0xa4a4f753l, 0x727296e4l, 0xc0c05b9bl, 
    0xb7b7c275l, 0xfdfd1ce1l, 0x9393ae3dl, 0x26266a4cl, 
    0x36365a6cl, 0x3f3f417el, 0xf7f702f5l, 0xcccc4f83l, 
    0x34345c68l, 0xa5a5f451l, 0xe5e534d1l, 0xf1f108f9l, 
    0x717193e2l, 0xd8d873abl, 0x31315362l, 0x15153f2al, 
    0x04040c08l, 0xc7c75295l, 0x23236546l, 0xc3c35e9dl, 
    0x18182830l, 0x9696a137l, 0x05050f0al, 0x9a9ab52fl, 
    0x0707090el, 0x12123624l, 0x80809b1bl, 0xe2e23ddfl, 
    0xebeb26cdl, 0x2727694el, 0xb2b2cd7fl, 0x75759feal, 
    0x09091b12l, 0x83839e1dl, 0x2c2c7458l, 0x1a1a2e34l, 
    0x1b1b2d36l, 0x6e6eb2dcl, 0x5a5aeeb4l, 0xa0a0fb5bl, 
    0x5252f6a4l, 0x3b3b4d76l, 0xd6d661b7l, 0xb3b3ce7dl, 
    0x29297b52l, 0xe3e33eddl, 0x2f2f715el, 0x84849713l, 
    0x5353f5a6l, 0xd1d168b9l, 0x00000000l, 0xeded2cc1l, 
    0x20206040l, 0xfcfc1fe3l, 0xb1b1c879l, 0x5b5bedb6l, 
    0x6a6abed4l, 0xcbcb468dl, 0xbebed967l, 0x39394b72l, 
    0x4a4ade94l, 0x4c4cd498l, 0x5858e8b0l, 0xcfcf4a85l, 
    0xd0d06bbbl, 0xefef2ac5l, 0xaaaae54fl, 0xfbfb16edl, 
    0x4343c586l, 0x4d4dd79al, 0x33335566l, 0x85859411l, 
    0x4545cf8al, 0xf9f910e9l, 0x02020604l, 0x7f7f81fel, 
    0x5050f0a0l, 0x3c3c4478l, 0x9f9fba25l, 0xa8a8e34bl, 
    0x5151f3a2l, 0xa3a3fe5dl, 0x4040c080l, 0x8f8f8a05l, 
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    0x9292ad3fl, 0x9d9dbc21l, 0x38384870l, 0xf5f504f1l, 
    0xbcbcdf63l, 0xb6b6c177l, 0xdada75afl, 0x21216342l, 
    0x10103020l, 0xffff1ae5l, 0xf3f30efdl, 0xd2d26dbfl, 
    0xcdcd4c81l, 0x0c0c1418l, 0x13133526l, 0xecec2fc3l, 
    0x5f5fe1bel, 0x9797a235l, 0x4444cc88l, 0x1717392el, 
    0xc4c45793l, 0xa7a7f255l, 0x7e7e82fcl, 0x3d3d477al, 
    0x6464acc8l, 0x5d5de7bal, 0x19192b32l, 0x737395e6l, 
    0x6060a0c0l, 0x81819819l, 0x4f4fd19el, 0xdcdc7fa3l, 
    0x22226644l, 0x2a2a7e54l, 0x9090ab3bl, 0x8888830bl, 
    0x4646ca8cl, 0xeeee29c7l, 0xb8b8d36bl, 0x14143c28l, 
    0xdede79a7l, 0x5e5ee2bcl, 0x0b0b1d16l, 0xdbdb76adl, 
    0xe0e03bdbl, 0x32325664l, 0x3a3a4e74l, 0x0a0a1e14l, 
    0x4949db92l, 0x06060a0cl, 0x24246c48l, 0x5c5ce4b8l, 
    0xc2c25d9fl, 0xd3d36ebdl, 0xacacef43l, 0x6262a6c4l, 
    0x9191a839l, 0x9595a431l, 0xe4e437d3l, 0x79798bf2l, 
    0xe7e732d5l, 0xc8c8438bl, 0x3737596el, 0x6d6db7dal, 
    0x8d8d8c01l, 0xd5d564b1l, 0x4e4ed29cl, 0xa9a9e049l, 
    0x6c6cb4d8l, 0x5656faacl, 0xf4f407f3l, 0xeaea25cfl, 
    0x6565afcal, 0x7a7a8ef4l, 0xaeaee947l, 0x08081810l, 
    0xbabad56fl, 0x787888f0l, 0x25256f4al, 0x2e2e725cl, 
    0x1c1c2438l, 0xa6a6f157l, 0xb4b4c773l, 0xc6c65197l, 
    0xe8e823cbl, 0xdddd7ca1l, 0x74749ce8l, 0x1f1f213el, 
    0x4b4bdd96l, 0xbdbddc61l, 0x8b8b860dl, 0x8a8a850fl, 
    0x707090e0l, 0x3e3e427cl, 0xb5b5c471l, 0x6666aaccl, 
    0x4848d890l, 0x03030506l, 0xf6f601f7l, 0x0e0e121cl, 
    0x6161a3c2l, 0x35355f6al, 0x5757f9ael, 0xb9b9d069l, 
    0x86869117l, 0xc1c15899l, 0x1d1d273al, 0x9e9eb927l, 
    0xe1e138d9l, 0xf8f813ebl, 0x9898b32bl, 0x11113322l, 
    0x6969bbd2l, 0xd9d970a9l, 0x8e8e8907l, 0x9494a733l, 
    0x9b9bb62dl, 0x1e1e223cl, 0x87879215l, 0xe9e920c9l, 
    0xcece4987l, 0x5555ffaal, 0x28287850l, 0xdfdf7aa5l, 
    0x8c8c8f03l, 0xa1a1f859l, 0x89898009l, 0x0d0d171al, 
    0xbfbfda65l, 0xe6e631d7l, 0x4242c684l, 0x6868b8d0l, 
    0x4141c382l, 0x9999b029l, 0x2d2d775al, 0x0f0f111el, 
    0xb0b0cb7bl, 0x5454fca8l, 0xbbbbd66dl, 0x16163a2cl}; 
     
    private long[] Te4 = { 
    0x63636363l, 0x7c7c7c7cl, 0x77777777l, 0x7b7b7b7bl, 
    0xf2f2f2f2l, 0x6b6b6b6bl, 0x6f6f6f6fl, 0xc5c5c5c5l, 
    0x30303030l, 0x01010101l, 0x67676767l, 0x2b2b2b2bl, 
    0xfefefefel, 0xd7d7d7d7l, 0xababababl, 0x76767676l, 
    0xcacacacal, 0x82828282l, 0xc9c9c9c9l, 0x7d7d7d7dl, 
    0xfafafafal, 0x59595959l, 0x47474747l, 0xf0f0f0f0l, 
    0xadadadadl, 0xd4d4d4d4l, 0xa2a2a2a2l, 0xafafafafl, 
    0x9c9c9c9cl, 0xa4a4a4a4l, 0x72727272l, 0xc0c0c0c0l, 
    0xb7b7b7b7l, 0xfdfdfdfdl, 0x93939393l, 0x26262626l, 
    0x36363636l, 0x3f3f3f3fl, 0xf7f7f7f7l, 0xccccccccl, 
    0x34343434l, 0xa5a5a5a5l, 0xe5e5e5e5l, 0xf1f1f1f1l, 
    0x71717171l, 0xd8d8d8d8l, 0x31313131l, 0x15151515l, 
    0x04040404l, 0xc7c7c7c7l, 0x23232323l, 0xc3c3c3c3l, 
    0x18181818l, 0x96969696l, 0x05050505l, 0x9a9a9a9al, 
    0x07070707l, 0x12121212l, 0x80808080l, 0xe2e2e2e2l, 
    0xebebebebl, 0x27272727l, 0xb2b2b2b2l, 0x75757575l, 
    0x09090909l, 0x83838383l, 0x2c2c2c2cl, 0x1a1a1a1al, 
    0x1b1b1b1bl, 0x6e6e6e6el, 0x5a5a5a5al, 0xa0a0a0a0l, 
    0x52525252l, 0x3b3b3b3bl, 0xd6d6d6d6l, 0xb3b3b3b3l, 
    0x29292929l, 0xe3e3e3e3l, 0x2f2f2f2fl, 0x84848484l, 



 

103 

    0x53535353l, 0xd1d1d1d1l, 0x00000000l, 0xededededl, 
    0x20202020l, 0xfcfcfcfcl, 0xb1b1b1b1l, 0x5b5b5b5bl, 
    0x6a6a6a6al, 0xcbcbcbcbl, 0xbebebebel, 0x39393939l, 
    0x4a4a4a4al, 0x4c4c4c4cl, 0x58585858l, 0xcfcfcfcfl, 
    0xd0d0d0d0l, 0xefefefefl, 0xaaaaaaaal, 0xfbfbfbfbl, 
    0x43434343l, 0x4d4d4d4dl, 0x33333333l, 0x85858585l, 
    0x45454545l, 0xf9f9f9f9l, 0x02020202l, 0x7f7f7f7fl, 
    0x50505050l, 0x3c3c3c3cl, 0x9f9f9f9fl, 0xa8a8a8a8l, 
    0x51515151l, 0xa3a3a3a3l, 0x40404040l, 0x8f8f8f8fl, 
    0x92929292l, 0x9d9d9d9dl, 0x38383838l, 0xf5f5f5f5l, 
    0xbcbcbcbcl, 0xb6b6b6b6l, 0xdadadadal, 0x21212121l, 
    0x10101010l, 0xffffffffl, 0xf3f3f3f3l, 0xd2d2d2d2l, 
    0xcdcdcdcdl, 0x0c0c0c0cl, 0x13131313l, 0xececececl, 
    0x5f5f5f5fl, 0x97979797l, 0x44444444l, 0x17171717l, 
    0xc4c4c4c4l, 0xa7a7a7a7l, 0x7e7e7e7el, 0x3d3d3d3dl, 
    0x64646464l, 0x5d5d5d5dl, 0x19191919l, 0x73737373l, 
    0x60606060l, 0x81818181l, 0x4f4f4f4fl, 0xdcdcdcdcl, 
    0x22222222l, 0x2a2a2a2al, 0x90909090l, 0x88888888l, 
    0x46464646l, 0xeeeeeeeel, 0xb8b8b8b8l, 0x14141414l, 
    0xdedededel, 0x5e5e5e5el, 0x0b0b0b0bl, 0xdbdbdbdbl, 
    0xe0e0e0e0l, 0x32323232l, 0x3a3a3a3al, 0x0a0a0a0al, 
    0x49494949l, 0x06060606l, 0x24242424l, 0x5c5c5c5cl, 
    0xc2c2c2c2l, 0xd3d3d3d3l, 0xacacacacl, 0x62626262l, 
    0x91919191l, 0x95959595l, 0xe4e4e4e4l, 0x79797979l, 
    0xe7e7e7e7l, 0xc8c8c8c8l, 0x37373737l, 0x6d6d6d6dl, 
    0x8d8d8d8dl, 0xd5d5d5d5l, 0x4e4e4e4el, 0xa9a9a9a9l, 
    0x6c6c6c6cl, 0x56565656l, 0xf4f4f4f4l, 0xeaeaeaeal, 
    0x65656565l, 0x7a7a7a7al, 0xaeaeaeael, 0x08080808l, 
    0xbabababal, 0x78787878l, 0x25252525l, 0x2e2e2e2el, 
    0x1c1c1c1cl, 0xa6a6a6a6l, 0xb4b4b4b4l, 0xc6c6c6c6l, 
    0xe8e8e8e8l, 0xddddddddl, 0x74747474l, 0x1f1f1f1fl, 
    0x4b4b4b4bl, 0xbdbdbdbdl, 0x8b8b8b8bl, 0x8a8a8a8al, 
    0x70707070l, 0x3e3e3e3el, 0xb5b5b5b5l, 0x66666666l, 
    0x48484848l, 0x03030303l, 0xf6f6f6f6l, 0x0e0e0e0el, 
    0x61616161l, 0x35353535l, 0x57575757l, 0xb9b9b9b9l, 
    0x86868686l, 0xc1c1c1c1l, 0x1d1d1d1dl, 0x9e9e9e9el, 
    0xe1e1e1e1l, 0xf8f8f8f8l, 0x98989898l, 0x11111111l, 
    0x69696969l, 0xd9d9d9d9l, 0x8e8e8e8el, 0x94949494l, 
    0x9b9b9b9bl, 0x1e1e1e1el, 0x87878787l, 0xe9e9e9e9l, 
    0xcecececel, 0x55555555l, 0x28282828l, 0xdfdfdfdfl, 
    0x8c8c8c8cl, 0xa1a1a1a1l, 0x89898989l, 0x0d0d0d0dl, 
    0xbfbfbfbfl, 0xe6e6e6e6l, 0x42424242l, 0x68686868l, 
    0x41414141l, 0x99999999l, 0x2d2d2d2dl, 0x0f0f0f0fl, 
    0xb0b0b0b0l, 0x54545454l, 0xbbbbbbbbl, 0x16161616l}; 
     
    public long Te0(byte b) 
    { 
        return Te0[b & 0xff]; 
    } 
     
    public long Te1(byte b) 
    { 
        return Te1[b & 0xff]; 
    } 
     
    public long Te2(byte b) 
    { 
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        return Te2[b & 0xff]; 
    } 
     
    public long Te3(byte b) 
    { 
        return Te3[b & 0xff]; 
    } 
     
    public long Te4(byte b) 
    { 
        return Te4[b & 0xff]; 
    } 
     
    public long MTe0(byte b) 
    { 
        return MTe0[b & 0xff]; 
    } 
     
    public long MTe1(byte b) 
    { 
        return MTe1[b & 0xff]; 
    } 
     
    public long MTe2(byte b) 
    { 
        return MTe2[b & 0xff]; 
    } 
     
    public long MTe3(byte b) 
    { 
        return MTe3[b & 0xff]; 
    } 
     
    public long MTe4(byte b) 
    { 
        return MTe4[b & 0xff]; 
    } 
     
    public long MOpt(byte b) 
    { 
        return MOpt[b & 0xff]; 
    } 
            
    // Routines to access table entries 
    public byte MSBox(byte b) 
    { 
        return MS[b & 0xff]; 
    } 
     
    // Routines to access table entries 
    public byte M(byte b) 
    { 
        return M[b & 0xff]; 
    } 
     
    public int maskOpt() 
    { 
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        return maskOpt; 
    } 
     
    public int maskNorm() 
    { 
        return maskNorm; 
    } 
     
    // Routines to access table entries 
    public byte SBox(byte b) 
    { 
        return S[b & 0xff]; 
    } 
     
    public byte invSBox(byte b) 
    { 
        return invS[b & 0xff]; 
    } 
     
    public byte Rcon(int i) 
    { 
        return powX[i-1]; 
    } 
     
    // FFMulFast: fast multiply using table lookup 
    public byte FFMulFast(byte a, byte b) 
    { 
        int t = 0;; 
        if (a == 0 || b == 0) return 0; 
        t = (L[(a & 0xff)] & 0xff) + (L[(b & 0xff)] & 0xff); 
        if (t > 255) t = t - 255; 
        return E[(t & 0xff)]; 
    } 
     
    // FFMul: slow multiply, using shifting 
    public byte FFMul(byte a, byte b) 
    { 
        byte aa = a, bb = b, r = 0, t; 
        while (aa != 0) 
        { 
            if ((aa & 1) != 0) 
                r = (byte)(r ^ bb); 
            t = (byte)(bb & 0x80); 
            bb = (byte)(bb << 1); 
            if (t != 0) 
                bb = (byte)(bb ^ 0x1b); 
            aa = (byte)((aa & 0xff) >> 1); 
        } 
        return r; 
    } 
         
    // loadE: create and load the E table 
    private void loadE() 
    { 
        byte x = (byte)0x01; 
        int index = 0; 
        E[index++] = (byte)0x01; 
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        for (int i = 0; i < 255; i++) 
        { 
            byte y = FFMul(x, (byte)0x03); 
            E[index++] = y; 
            x = y; 
        } 
    } 
     
    // loadL: load the L table using the E table 
    private void loadL() 
    { // careful: had 254 below several places 
        int index; 
        for (int i = 0; i < 255; i++) 
        { 
            L[E[i] & 0xff] = (byte)i; 
        } 
    } 
     
    // loadS: load in the table S 
    private void loadS() 
    { 
        int index; 
        for (int i = 0; i < 256; i++) 
        S[i] = (byte)(subBytes((byte)(i & 0xff)) & 0xff); 
    } 
     
    // loadInv: load in the table inv 
    private void loadInv() 
    { 
        int index; 
        for (int i = 0; i < 256; i++) 
            inv[i] = (byte)(FFInv((byte)(i & 0xff)) & 0xff); 
    } 
     
    // loadInvS: load the invS table using the S table 
    private void loadInvS() 
    { 
        int index; 
        for (int i = 0; i < 256; i++) 
        { 
            invS[S[i] & 0xff] = (byte)i; 
        } 
    } 
     
    // loadPowX: load the powX table using multiplication 
    private void loadPowX() 
    { 
        int index; 
        byte x = (byte)0x02; 
        byte xp = x; 
        powX[0] = 1; powX[1] = x; 
        for (int i = 2; i < 15; i++) 
        { 
            xp = FFMul(xp, x); 
            powX[i] = xp; 
        } 
    } 
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    // FFInv: the multiplicative inverse of a byte value 
    public byte FFInv(byte b) 
    { 
        byte e = L[b & 0xff]; 
        return E[0xff - (e & 0xff)]; 
    } 
     
    // ithBIt: return the ith bit of a byte 
    public int ithBit(byte b, int i) 
    { 
        int m[] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80}; 
        return (b & m[i]) >> i; 
    } 
     
    // subBytes: the subBytes function 
    public int subBytes(byte b) 
    { 
        //byte inB = b; 
        int res = 0; 
        if (b != 0) // if b == 0, leave it alone 
            b = (byte)(FFInv(b) & 0xff); 
        byte c = (byte)0x63; 
        for (int i = 0; i < 8; i++) 
        { 
            int temp = 0; 
            temp = ithBit(b, i) ^ ithBit(b, (i+4)%8) ^ ithBit(b, (i+5)%8) ^ 
            ithBit(b, (i+6)%8) ^ ithBit(b, (i+7)%8) ^ ithBit(c, i); 
            res = res | (temp << i); 
        } 
        return res; 
    } 
     
    private void genMTablesOrigAES() // for original S Box 
    { 
        Random randGen = new Random(System.currentTimeMillis()); 
        maskNorm = (byte)(Math.abs(randGen.nextInt()) & 0x000000ff); 
        byte tmpByte; 
         
        System.out.println("mask1SBox="+Integer.toHexString(maskNorm)); 
         
        for (int i = 0; i < 256; i++) 
        { 
            tmpByte = (byte) (randGen.nextInt() & 0x000000ff); 
            MS[i] = (byte)(S[i] ^ tmpByte); 
            M[i] = (byte)(tmpByte ^ maskNorm); 
        } 
    } 
     
     
    private void genMTablesOptAES() // for optimized S Boxes 
    { 
        Random randGen = new Random(System.currentTimeMillis()); 
        maskOpt = Math.abs(randGen.nextInt()); 
        System.out.println("mask="+Integer.toHexString(maskOpt));      
        int tmp; 
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        for (int i = 0; i < 256; i++) 
        { 
            tmp = randGen.nextInt(); 
            MTe0[i] = Te0[i] ^ tmp;            
            MTe1[i] = Te1[i] ^ tmp;             
            MTe2[i] = Te2[i] ^ tmp;             
            MTe3[i] = Te3[i] ^ tmp; 
            MTe4[i] = Te4[i] ^ tmp; 
            MOpt[i] = tmp ^ maskOpt; // use M0 for the case of only 1 M table 
        } 
    } 
} 
 
public class Copy 
{ 
    private static final int Nb = 4; 
     
    // copy: copy in to state 
    public static void copy(byte[][] state, byte[] in) 
    { 
        int inLoc = 0; 
        for (int c = 0; c < Nb; c++) 
            for (int r = 0; r < 4; r++) 
                state[r][c] = in[inLoc++]; 
    } 
     
    // copy: copy state to out 
    public static void copy(byte[] out, byte[][] state) 
    { 
        int outLoc = 0; 
        for (int c = 0; c < Nb; c++) 
            for (int r = 0; r < 4; r++) 
                out[outLoc++] = state[r][c]; 
    }    
} 
 
 
 
 
 




